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The variational implicit-solvent model (VISM) is
an efficient approach to biomolecular interactions,
where electrostatic interactions are crucial. The
total VISM free energy of a dielectric boundary (i.e.
solute-solvent interface) consists of the interfacial
energy, solute-solvent interaction energy and
dielectric electrostatic energy. The last part is the
maximum value of the classical and concave Poisson-
Boltzmann (PB) energy functional of electrostatic
potentials, with the maximizer being the equilibrium
electrostatic potential governed by the PB equation.
For the consistency of energy minimization and
computational stability, here we propose alternatively
to minimize the convex Legendre-transformed
Poisson-Boltzmann (LTPB) electrostatic energy
functional of all dielectric displacements constrained
by Gauss” Law in the solute region. Both integrable
and discrete solute charge densities are treated,
and the duality of the LTPB and PB functionals is
established. A penalty method is designed for the
constrained minimization of the LTPB functional. In
application to biomolecular interactions, we minimize
the total VISM free energy iteratively, while in each
step of such iteration, minimize the LTPB energy.
Convergence of such a min-min algorithm is shown.
Our numerical results on the solvation of a single
ion indicate that the LTPB performs better than the
PB formulation, providing possibilities for efficient
biomolecular simulations.
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1. Introduction

In a variational implicit-solvent model (VISM) [1-4] (cf. also related models [5-7]), one
minimizes a solvation free-energy functional of all possible solute—solvent interfaces (i.e. dielectric
boundaries) to determine an equilibrium system of charged molecules (such as proteins)
immersed in an aqueous solvent (i.e. water or salted water) and estimate the solvation free
energy. The VISM free energy consists of the solute-solvent interfacial energy, the solute-solvent
interaction energy and the electrostatic energy. The last part is often described through the
equilibrium electrostatic potential ¢ : 2 — R, which is governed by the dielectric boundary
Poisson-Boltzmann (PB) equation (PBE) [3,8-12]

V-erVeér — x+B'(¢r)=—f ing, (1.1)

together with some boundary conditions. Here, £2 C R3 is the underlying solvation region, I”
is the dielectric boundary that divides £2 into the solute region £2_ and the solvent region £2.,
X+ = x@, is the characteristic function of 21, and e : 2 — R is the dielectric coefficient defined
by

e ifxef2_,

X) =
8F( ) ey ifx€Q+,

(1.2)
where e_ and ¢ are the dielectric permittivities for the solute and solvent, respectively. (Typically,
e_~¢gg and e ~80gy with gy the vacuum permittivity.) See figure 1. The function f: £ —
R represents the charge density of solute molecules, while the term —B'(¢r) describes the
ensemble-averaged charge density of mobile ions in the solvent. The function B: R — R is given

by

M
B@)=p"1) (PP 1), (1.3)
j=1

where M > 1 is the number of ionic species, B! =kgT with kg the Boltzmann constant and T
temperature, g; = Zje with e the elementary charge, and ¢ and Z; are the bulk ionic concentration
and valence of ions of the jth species. We note that different forms of the function B can be used for
different models; cf. e.g. [13-16]. The equilibrium electrostatic potential ¢, the optimal boundary
I" and the VISM free energy depend on the form of B and the parameters used in defining B. A
commonly used boundary condition for the electrostatic potentials is ¢ = gon 92 withg:9£2 — R
a given function.

The PBE (1.1) is the Euler—Lagrange equation of the classical PB electrostatic energy functional
applied to the continuum solvation [11,12,15,17-20]

Irlol= | [~F 1908+ 1 B@)] dx Yo cHiz) (19

where
Hy(2)=1{¢ e H'(2): ¢ =g on 32).

This functional is concave and maximized to yield the equilibrium electrostatic potential ¢,
which is the solution to the PBE, and the corresponding electrostatic energy Ecj[I']=Ir[¢r]. We
refer to [12,21] for discussions on the maximization instead of minimization of the electrostatic
energy functional for equilibrium electrostatics.

An iterative method is often used to minimize numerically the VISM solvation free-energy
functional. In each step of the iteration, one solves the PBE (1.1) or maximizes the PB functional
(1.4). Maximizing the electrostatic energy and then minimizing the total VISM solvation free
energy may possibly develop instabilities if there are not enough steps for such maximization or
minimization. It is therefore natural to ask if the electrostatics can be determined by minimizing a
convex energy functional. Motivated by such a question, here we develop an alternative approach
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Figure 1. A schematic diagram of charged molecules immersed in an aqueous solvent. The region of solvation £2 is divided
by the solute—solvent interface (i.e. dielectric boundary) I" into the solute region §2_ and the solvent region £2, . The solute
region $2_, which can have multiple connected subregions, contains all the solute atoms x; carrying partial charges Q; (i =
1,. .., N).The unit normal n at I" points from £2_ to £2..

to the electrostatics for VISM, based on the concept of the Legendre-transformed Poisson—
Boltzmann (LTPB) electrostatic energy [22] (cf. also [21,23-25]). For a given dielectric boundary
I, the LTPB energy functional is given by Ciotti & Li [21]

]r[D]:J [L|D|2+X+B*(f—V~D)] dx+J g(D-n)dS (1.5)
o L2er 082

for all dielectric displacements D : £2 — R3 that are constrained by Gauss’ Law (in the differential
form)

V.-D=f inf2_, (1.6)

where B* is the Legendre transform of B and # is the unit exterior normal at 2. We recall for
& e R that [26,27]

B*(&) = suplaé — B(a)] =& — B(s) with B'(s)=£, and B¥'(¢) =s. (1.7)
aeR

Our main results are the following:

(1) We construct the LTPB electrostatic energy functional with the constraint for both the case
of a continuum solute charge density represented by an integrable function (cf. (1.5)) and
that of a discrete charge density (or point charges) described by a linear combination of
Dirac masses. We prove the duality between the classical PB and the LTPB functionals. For
a continuum charge density f € L%(£2), this duality is max,¢ HY(®) Ir[¢]l= minpev,Jr [D],
and the unique maximizer ¢ of I over Hé(.Q ) and the unique minimizer D of | over
Vs are related by D = —eVér, where

Vrg={DeH(div,2):V-D=fin 2_} (1.8)
and
H(div, 2)={D e [L2(2)]?: V- D e L*(2)}. (1.9)

(2) To minimize numerically the LTPB functional, we propose a penalty method. For the
case of a continuum charge density f € L?(£2), this method amounts to minimizing the
penalized functional

IruID1=]r[D] + zi J IV.D—f2dx VD eH(div, ), (1.10)
M Jo_

without the constraint, where u > 0 is a penalty parameter and y_ is the characteristic
function of §£2_. We prove that, as u — 0, the minimizer and minimum values of the
penalized functional /-, converge to those for the functional ;- : Vs — R, respectively.
Such convergence is numerically verified.
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(3) We incorporate the LTPB electrostatics into the VISM, and derive the dielectric boundary
force =3 (minp/r[D]) using the minimizing dielectric displacement Dy € V- r. We also
construct a min-min algorithm and a max-min algorithm to minimize numerically the
total VISM free energy with the LTPB and PB electrostatics, respectively. The convergence
of the min—min optimization algorithm is shown.

(4) We present an analysis of the duality and the penalty method for a simplified radially
symmetric system resulting from the application of VISM to the solvation of a single ion.
We also provide a new and direct derivation of the dielectric boundary force for a similar
and reduced one-dimensional system. Moreover, we report extensive numerical results
on the solvation of a single ion to show that the LTPB formulation with the min—-min
algorithm performs better than the PB formulation with the max—min algorithm and that
the VISM-LTPB predicts accurately the solvation free energy of single ions.

We remark that our results can be directly extended to some size-modified PB and LTPB
electrostatics with a general convex function B [13-16,28-35].

The rest of this paper is organized as follows: in §2, we construct the LTPB electrostatic
functionals and prove the duality of the LTPB and the PB functionals. We also propose and prove
the convergence of a penalty method for minimizing the LTPB energy functional and present
some numerical results. In §3, we apply the LTPB theory to the variational implicit solvation
and derive the dielectric boundary force. We also design a min—-min algorithm and prove its
convergence for minimizing the VISM-LTPB functional. Numerical results for the solvation of
an ion are presented. Finally, in §4, we draw conclusions of our findings. In appendix A, we give
anew and direct derivation of the dielectric boundary force for a one-dimensional model system.

2. The LTPB electrostatics with a dielectric boundary

We assume the following:

(A1) All £2, $2_, 24 are smooth and bounded open sets in R3, ' =9£2_ and all x; € 2_ and
QieR(i=1,...,N)are given; cf. figure 1;

(A2) Both e_ and & are given, distinct positive numbers, and ¢ is defined by e =&+ in £24;

(A3) The function B:R — R is smooth, strictly convex and uniquely minimized at 0 with
B(0) = 0. Moreover, B(+00) = 0o; (an example of such a function is B(s) = cosh(s) — 1).

(A4) The function f € L?(£2) is given, and is smooth, e.g. f € H'(£2). The boundary value g:
982 — R (cf. (1.4) and (1.5)) is the trace of some function, also denoted g, in WLo(82).

We note that the function B: R — R defined in (1.3) and those that model the ionic size effect in
the size-modified PB theory [15,16,34,35] all satisfy the assumption (A 3). We also recall that the
space H(div, £2) (cf. (1.9)) is a Hilbert space with respect to the inner product

(D1,D2) = | Dy D2+ (V- Do)V - Do)l
Moreover, D - n € L2(382) if D € H(div, £2) and [36]

J(V-D)udx:—J D-Vudx—}—J (D -n)udS VueHl(Q). (2.1)
2 2 302

(a) The electrostatic energy functionals and the duality

Case 1. A continuum charge density. For this case, the PB and the LTPB functionals I :Hg((z) —
R U {~oco}and Jr: Vs — RU {oc} are defined in (1.4) and (1.5), respectively, and their properties
are summarized in the next theorem. We denote [[u]l; = u|g, —u|e_on I forany u: 2 — R when
the traces are defined.
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Theorem 2.1.

(1) The PB functional I :H;(.Q) — R U {—oo} admits a unique maximizer ¢r H;,(Q). Moreover,
or eL®(2), ¢rilq. e H3($2+), and [erdnprlir =0, and ¢r is the unique weak solution in
Hl(Q) to the PB equation (PBE) (1.1).

2) Let Dp =—&pVer. Then, D € fo and it is the unique minimizer of the LTPB functional
Jr:Vrg— RU {oo}. Moreover, [Dr - nllr =0and B¥'(f =V -Dr)=¢r in 2.

(3) Duality: MaXgeHl(2) Irl¢]l= minpev,Jr [D].

Proof. (1) By Poincaré’s inequality, we have supy i o)Ir[¢]<oo. The existence and
8

uniqueness of a maximizer ¢r for I :Hg,(.Q) — R U {—o00} can be obtained by the direct method
in the calculus of variations, using the strict convexity of B. A comparison argument leads
to ¢r € L*°(£2) [18]. Routine calculations then imply that the maximizer ¢ satisfies the PBE
(1.1), which is the Euler-Lagrange equation for the functional Iy, and that [erd,¢r]r =0. The
regularity of ¢r follows from existing results of solution regularity for elliptic equations; cf.
[18,19].

(2) Forany ¢ € H;(SZ) and any D € Vs, we have by (2.1) that

i 1
Ir[g] < —€—F|V¢>|2 +f9 = x+B(@) + 5 —lerVe + D|2] dx
2L er
[ 1D
= ol 2er +f¢ X+B(®) + V¢ -D | dx
[ 1D
=|, |z *re@ - VD) -8 dr+ | gD nds
2 Er 2
_[ o2 .
=| | %r + x+B*(f =V -D) | dx + g(D-n)dS
=Jr[D].

Note by (1.1) that Dy = —eVér € V. Setting ¢ =¢r and D =D and noting by (1.1) that
f—V-Dr=B(¢r)and hence B(f - V-Dr)=¢r(f — V-Dr) — B(¢r) in 24, we have Ir[¢r] =
Jr[Dr]. Thus, D is a minimizer of [ over V £ It is unique since [ is strictly convex over
Vr . Since [erdn¢rllir =0, we have [Dr - n]l =0. By the PBE (1.1), we also have f — V- D =
Xx+B(¢r) in £24. Hence, by the property of Legendre transforms, B¥'(f — V- Dy) = ¢ in £24.

(3) This follows from I [¢r] =max¢eH§(_Q) Ir[e]l < mmDEV”]r[D] =JrIDrl=Irl¢rl. |

Case 2. A discrete charge density. The equilibrium electrostatic potential, now denoted br, is
the weak solution to the boundary-value problem of the PBE with point charges [3,15,19,37]

V.erVer — x4B(@r)=-) Qiy ing,
i=1 (2.2)
z[&p =9 on ds2,

where 6, denotes the Dirac mass concentrated on a € R3. The electrostatic energy is given in
[3,15,19]

N
Badll=3 > Qr ~ o))+ [ |36 r) ~ 5G| ax, @3
i=1 *

where ¢c is the Coulomb potential: zf)c(x) = Zf\i 1 Qi/(4me_|x — x;]). Note that we do not include
an extra term in B as we can derive the energy form by minimizing a continuum electrostatic
free-energy functional of ionic concentrations using different boundary conditions (e.g. the
homogeneous Neumann boundary condition) for electrostatic potentials. The boundary value g
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in (2.2) is an approximation of that of the equilibrium electrostatic potential; cf. [3,15,19,38,39].
Following [15,19], we express the electrostatic energy using integrals that are mathematically
more convenient to handle

Eaell'] = —j

5 1V@r = dro)? + x4BGr) | v+ Ar (24)

and
E_—&4

A A T .
Ar= 3 | Vi Vivdxt g 3. Qe — b @5)

Here, ¢>1~ o is defined by —V - 8pV<[>r o= Zl 1 Q,Bxl in £2 and ¢p s =g on 32, and both $o and
$oo are solutions to —s_ Au = ZZ 1 Qidy; in 2 with do=0and oo = g on 382, respectively; cf. [19].
Note that ¢os — @¢ is harmonic in £2_ so each (qboO qbc)(x,) (1 =i < N)is well defined as the limit
as x — x;.

We define the PB energy functional for the case of point charges Ir: @r oo +H)(2)—>RU
{—oo} by

il == | [FIV0 ~ dra)l + 1:B@)]dx +Ar Yo chro+HYR). @6

Note that I [pr]= Ecle[I"]is the electrostatic energy. Note also that ¢ € ([;F,oo + H(l)(.Q) if and only
if ¢ € c + H} (2) with h=g — ¢c. Let Vg be defined by (1.8) with f =0. We define the LTPB
functional fp :Vro— RU{oo} by

A 1 A
]r[D]:J {§|D|2 dx+X+[B*(—V~D)+¢1‘/OOV-D]}C1X+AF VDeVrp. (2.7)
2 r

Theorem 2.2.

(1) The PB functional Ir: $r,oo + Hé(ﬂ) — R U {—o0} admits a unique maximizer ér. Moreover,
dr — drec €LX(R), (br — dr o)l 2. € HX(S2+), and [erdudrllr =0, and ¢ is the unique
weak solution to the boundary-value problem of the PBE (2.2).

(2) Let D =—erV(¢r — ¢r,00). Then, Dr € Vo and it is the unique minimizer of the LTPB
functional 71~ Vrop—R UA{oo}. Moreover, B*’A(—V . f)p) =¢rin 24,

(3) Duality: max, g pie) Ir[¢] =minpey,.,/r[D].

Proof. The proof of part (1) and part (3) is similar to that for theorem 2.1. So, we only prove part
(2). Let ¢ € ¢r,00 + Hi(£2) and D € V. Then,

Irle] < J —*IV(¢ bre)l* + 7|51"V(¢_(Z7F,00)+D|2_X+B(¢)i| dx+Ar

2
JQ '2—'+V<¢ bree)-D— X+B(¢):|dx+Ar

[1DP2
Jo|Zr @ brav D= xB@)|dx+ ar

D|? A
{" + x4+lp(=V - D) —B(¢)+¢F,ooV'D]} dx+Ar

IA

| {—|D|2+X+[B*( VD)4 draV - D]}dx+Ar
2

JriD
By (2.2) and the definition of ¢3r s, we have D = —erV(dr — dr o) € Vi o- Setting ¢ = ér and

D=Dr andnotingthat -V.Dp= B/(qﬁp)andhenceB*( V. D[‘)—( V. Dr)¢r— (¢>1~)1n9+,
wehave Ir[¢r] = ] r [D r]- Thus, D is a minimizer of ] r over V. Itis unique since ] r is strictly
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convex over V. Finally, it follows from the property of Legendre transforms that B¥ (—=V - D) =
érin Q4. [

(b) A penalty method

Let 1 > 0. Recall that -, is defined in (1.10). Similarly, we define fr,ﬂ :H(div, 2) - R U {400} by
A A 1
rulD1=]rD1+ 5 | (v-DPdx @8)
nJo.

Theorem 2.3. For each u > Oi the functional Jr ,(resp. jr,M)ZH(diV,Q) —R U {+00} Aadmits
a unique minimizer Dr , (resp. Dr )€ H(div, £2). Moreover, Dr, — Dr (resp. Dr,, — Dr) in
H(div, £2) and minpepidiv,e)/r,u[D] = minpev . Jr[D] (resp. mMinpepdiv,2)) . [D] = minpev,.,
fr [D]) as w — 0, where D = argminDevrf]r [D] ( resp. Dp= argminDevrlOfr [D]).

Proof. We only consider ], and ] as the proof for 71",M and 71— is similar. Let u > 0. We define
Ir . Hy(22) > R U {—00} by

Iraldl=1rlol= 5 | o2ds=| [0k +fo— B - S0 dx @)

Similar to the proof of theorem 2.1, the functional I, :H;(.Q) — RU{—o00} admits a unique

maximizer ¢r , € L°°(£2) and it is the unique weak solution in H;,(Q) to the Euler-Lagrange
equation

—VerVor+ x+B(or.) + ux—éru=f inf. (2.10)

We show that ¢, — ¢r in HY(2) and Irlér,.]— Irl¢r] as w— 0, where ¢ is the unique
maximizer of I :H;(_Q) — R U {—o0}. It suffices to show that for any sequence 1 \( 0, there is a
subsequence, not relabelled, such that ¢, — ¢r in HY(2) and Irwlér,u]l—Irl¢r]lask— oo.

Let § € Hy(£2) be such that =0 in £2_. Then Ir.l¢r.]= maxXgep(o) ruld] = Ir,ul8] =
Ir[3] > —oo. It then follows from the definition of I, and Poincaré’s inequality that

sup [lor,ullm @) < oo (2.11)
n>0

Now for any u \, 0, there exists a subsequence of {¢r,,}, not relabelled, and some ér e H(2)
such that ¢r ,, — ¢r in HY(2). (— denotes the weak convergence.) Clearly, ¢r eHgl,(Q). By
the convexity of —Ir, limsup,_, . Ir[¢r, ] <Irl¢r]. This and the fact I, [¢r] <Ir . lér.]1 =<
Ir(ér, ] imply that

Irl¢rl= lim Ir ,l¢r] <iminflr ,,[ér ] <Uminflr[ér .,]
k—o0 k— 00 k— 00

<limsup Ir[¢r,, ] <Irl¢r] <Irl¢rl.

k—o00

Thus, Ir[¢r]l=Ir[¢r]and ¢r =¢r by the uniqueness of maximizer of Ir. Hence, I, [¢r 1] =
Irl¢r].

We now prove the strong convergence ¢, — ¢r in H!(£2). Denote for each k > 1

er er
we=| [F190r,uP - Fivorf]dc and b= [Bor.) - B@rdr
ol?2 2 2,
Passing to a further subsequence if necessary, we have by the weak convergence ¢r ,, — ¢r
in Hl(.Q) that ¢, — ¢r in L2(.Q) and ¢r ,, — ¢r a.e. in 2. These, together with the energy
convergence I, [¢r ] — Irl¢r] as k— oo and the bound (2.11), imply that a; + by — 0 as
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k — oo. But liminfy_, o ax >0 as ¢r, — ¢r in HY(£2) and liminfi_, o bx >0 by Fatou’s lemma.
Therefore,

0= lim (ax + by) > liminfa, + liminf by > 0.
k— o0 k— o0 k—o00

Hence liminf_, , ax = 0. Passing to a further subsequence if necessary and without relabelling,
we have g — 0 as k — oo. This and the weak convergence ¢r ,, — ¢r in H L), together with the
identity

IVor . — Vori? =1Ver.|> — IVer|* — JQ 2Vér - V(pr, — or)dx,

imply that Vér ,,, — Vor in L%(2) and consequently that ¢, — ¢r in HY(Q).

Finally, set Dr,, = —erV¢r,. By (2.10), Dy, € H(div,$2) and V-Dr, =f — x+B'(¢ru) —
wx—ér, in 2. Moreover, since the Legendre transform of s — us?/2 is & — £2/(2u), we see that
Dr , is the unique minimizer of [, over H(div, 2) and [ .[Dr .]l=Ir . [¢r ] (cf. the proof of
theorem 2.1). Thus, D ;, — Dr in H(div, £2) and minpeydiv,2)/r,.[D] = minpev,Jr [D]. |

() Numerical results

We choose 2 =(-1,1)%, I'={xeR3:|x| =1/2}, e_ =&y, €4 =78, f=1in £, and g=0 on
902, and consider B(s)=s2/2 and B(s) =cosh(s) — 1. We cover 22 =[-1,1]° with a uniform
finite-difference grid of size h=2L/N, where N +1 is the number of grid points in each
coordinate direction, and use the central differencing and trapezoidal rule to discretize the
energy functionals. The nonlinear conjugate gradient method is used to minimize or maximize
numerically the resulting convex and concave functionals, respectively. We first maximize the
discretized functional I with a very fine grid to obtain a numerical maximizer ¢exact, and
calculate Dexact = —&5 Vexact and use it as the ‘exact” solution. We then choose several values of
N and p. For each pair of the chosen N and 1, we minimize numerically the discretized functional
Jr .. to obtain a numerical minimizer D,, n. To test how the constraint V - D =f in £2_ is satisfied,
we define the penalty error

— 2
PE(M/N) = Ilv . D;L,N _fHLZ(.Qi)-
Figure 2a,b shows that for a fixed u > 0 the error decreases with the increase of N, the number
of grid points in one direction. For a large value of i > 0, such error decreasing saturates as N

increases due to the penalty error with the fixed u. Moreover, for a fixed N, the error decreases as
w decreases. Figure 2¢,d indicates that (1/2u1)PE(u, N) = O(u) as u — 0, implying that

1
JruDrul=JrlDrl= EIIV -Dr _f”%l((z,) -0 asu—0,

as predicted by theorem 2.3.

3. Application to variational implicit solvation

(a) Solvation free energy and the dielectric boundary force

In the VISM (cf. figure 1), the solvation free-energy functional of dielectric boundaries is given in
[1-4]

F[I'] =PyVol(£2_) + YOJ (1—-2cH)dS + 'OWJ U(x)dV + Ege[I']. (3.1)

r 2
Here, Py is the difference between the pressure outside and inside the molecular region £2_, y; is
the constant surface tension, 7 is the Tolman length and pyy is the bulk solvent density. All Py, yy,
7 and py are given constants. In addition, H is the mean curvature (positive if £2_ is a sphere),

U(x) = Zf\; 1 llii}(lx — x;|) with each Uil; a Lennard-Jones (L]) potential. The last part Egje[I"] is the
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— 21 =10"1 —~2u=10"!
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log,, of the penalty error

log, ,(1/2p0) log, ,(1/211)

Figure 2. The relative error 1D,y — Dexact||2(2)/ | |Dexact||2(52) Versus N for several 1e-values (a,b) and the penalty error
PE(14, N) versus 1/(2u4) for several values of N (¢,d) for B(s) = 5> /2 (a,c) and B(s) = cosh(s) — 1(b,d).

electrostatic energy. In the classical PB formulation, it is given by

MaXpeH(2) Ir[¢] (for a continuum charge density; cf. (1.4)),

Eele[F] = (3~2)

MaXgeH1(e) Ir[¢] (for point charges; cf. (2.6)).
The dielectric boundary force is the negative first variation of the total free energy with respect to
the variation of the boundary I". This first variation is a function on I" and is given in [3,40,41]

SrFII' =P+ 2y9(H — tK) + pwU + SrEcle[ ']
For the case of a continuum charge density, the variation of the electrostatic energy SrEce[I] is
given in [18,19]

&

1/1 1 —&_
SrEaell =3 (— - Z) lerdndr|* + %W —n®@n)Vér|* + B(¢r), (3.3)

where ¢ is the equilibrium electrostatic potential, the solution to the boundary-value problem
of the PBE (1.1), and I is the 3 x 3 identity matrix. For the case of point charges, the formula is the
same except ¢ should be replaced by ¢r, the solution to the boundary-value problem of PBE
(2.2). Note that the force —8 E¢je[I"] points from the higher to lower dielectric region [18].

Here, we propose to use the LTPB formulation for the electrostatic energy

min [r[D] (for a continuum charge density; cf. (1.5)),
DEVr f

Eele[r] = (3~4)

min 71~[D] (for point charges; cf. (2.7)).
DEV,"(]
By theorem 2.1 and theorem 2.2, both the PB and LTPB formulations lead to the same value of

Ecle[I'] for a continuum charge density or for point charges. To numerically minimize the total
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solvation energy, we use the penalized LTPB electrostatic energy functionals defined in (1.10) and
(2.8), respectively. Let us denote also by E¢je . [1"] the minimum of [, or [, over H(div, £2).

Theorem 3.1. (1) A continuum charge density. Let D and Dr,, be the minimizers of Jr: Vs —
R U {oo} and Jr . : H(div, £2) — R U {oo}, respectively. We have
2

1/1 1 Ey—E_ Dr
SrEaell’l = 2 (8* - a) IDr -n* + +T ‘(I— n ®”);

+B(B*(f -V -Drlg,) onl

and
2

1/1 1 e4—E_ Dr,
‘SI"Eele,;L[F]: E <g7 - Z) D[‘/H_ N n|2 + +T ‘(I— n®7’l) 81—~M

1
+B(B*(f =V -Drle,)) — ﬂ(f —V.-Drle)? onr.

(2) Point charges. Let Dr and ﬁr,u be the minimizers ijr :Vro— RU{oo}and jr,u :H(div, 2) —
R U {oo}, respectively. Then, the above formulae in part (1) hold true with D and Dr ,, replacing D and
Dr ., respectively, and f = 0.

Proof. We only prove part (1) as the proof of part (2) is similar. By theorem 2.1, Dr = —erVér,
where ¢ = argmax¢€Hl(Q)Ip [¢], and B*/(f —V-Dr)=¢r in 24. Now the first formula follows
8

from (3.3). Set I, [¢p] = Ir[p] — (ﬂ/z)||¢||%2(gi). Then Ir, :Hé(.Q) — R U {—00} admits a unique
maximizer ¢r ,. Moreover, D, = —erV¢r,, is the unique minimizer of [r ,:H(div, 2) —
R U {00}, and MaXpeH(2) Ir, . l¢]l= minDeH(diV,Q)]F/M[D] = Egle ;. [I"]. With the same argument for
deriving (3.3) (cf. [18,19]), we obtain the formula for 8 Eele ; [I"] =81 Eele[I'] — (,u/2)¢%’u. Since
the Legendre transform of the function s > us?/2 is & > £2/(21), we obtain the second formula
by using the same argument. u

(b) A min—min algorithm and a max—min algorithm

We apply the gradient descent method to minimize the total VISM free-energy functional (3.1).
Once T} is given, we obtain the new boundary Iy := I} — axSrF[I%], i.e. a point x; € I is
moved to xxy1 =X — axdrF[Ik](xk) € T41, with a step size o > 0. With the LTPB electrostatics,
we propose a min-min algorithm for such minimization. For comparing the LTPB and PB
formulations, we also design a max—min algorithm for minimizing the total free energy with
the PB electrostatic energy. These algorithms are described only for the continuum charge density
as they are similar for point charges. Moreover, for the LTPB formulation, we shall replace the
LTPB functionals by their penalized versions. Note that for large-scale simulations it is desirable
to have only a few iterations to get the approximate ¢y or Dyy1. Hence, in our numerical tests,
we will choose a small number of steps for such iterations.
A min—min algorithm for minimizing the VISM-LTPB functional. Given I} and Dj.

— Minimize |, over V, s by an iteration method with Dy as the initial guess to obtain an
approximate minimizer Dy 1;

— Calculate 8 E¢je[I}] using Dy and then calculate § - F[I%];

— Choose aj1 and update Iy = I — ox+18r F[T%].

A max—min algorithm for minimizing the VISM-PB functional. Given Iy and ¢y.

— Maximize I; over H;(SZ) by an iteration method with ¢y as the initial guess to obtain an
approximate maximizer ¢y 1;

— Calculate 8 Egle[I}] using ¢y41 and then calculate § - F[I%];

— Choose oy and update Iy = I} — ox18r F[T%].
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We now state the min-min algorithm and prove its convergence for a general optimization
problem. We assume

(al) Both m and n are positive integers, and U CR"™ and V CR" are open, bounded and
convex;

(a2) The function f € C%(U) is convex, and the function g€ CZ U x V)is strictly convex;

(a3) For each x € U, there exists a unique minimizer yy € V (not on V) of g(x,-): V — R.

We define F: U — Rand F: U x V — R, respectively, by

F(x) =f(x) + ming(x,y) VxelU
yeV

and - -
Fooy)=f@) +gxy)  VxyelUxV.

Lemma 3.2.

(1) The function F: U — R is Lipschitz-continuous. Moreover, there exists a unique x* € U such that
F(x*) =min _;F(x).

(2) The function F € C>(U x V) and is strictly convex. Moreover, there exists a unique (X, ) € U x V
such that F(X,y) = min(x,y) v Fy).

(3) We have min  7F(x) = min(xly) Emf(x, ). Moreover, (x*,yy+) = (X, ).

Proof. (1) Let x/,x” € U. Since minyevg(x” ,¥) =g(x", yx») by the assumption (A 3), we have
ming(x’,y) — ming(x", y) < (', yx) — g", yx) < Klx' —x”1,
yeV yeV

where K=max, .5y | Vxg(x, ¥)|. Switching x and x" and noting that f € C'(U), we see that F:

o (ey)e _ 6 _
U — R is Lipschitz-continuous. Since F is continuous on U and U is compact, there exists x* € U
such that F(x*) = min, _;F(x). The uniqueness of x* follows from Part (3).

(2) These follow from the assumptions on f and g, and the compactness of U x V.

(3) Clearly, F(x) = F(x, yx) > F(x, ) for any x € U (cf. the assumption (A 3)). Hence, min,_;;F(x) >
min(x’y) emf(x, ). On the other hand,

min__F(v,y) = F,7) =f(¥) + §(%,9) = f(%) + 8(%, yz) = F(¥) = min F(x).
(x,y)elUxV xel

Thus, min, ;F(x) = min, , 757 F(x,y). This also implies that F(x*, yy+) = F(x*) = F(%, ¥). Since the

minimizer of F is unique, we have (x*,y+) = (%, ). [ ]
A min—min algorithm for finding x* = argmin,  ;F(x).
Step 0. Choose xg € U. If xp = x* thin stop. Ot&erwise, compute yo = argmin, v8(xo, y).i&et k=0.
Step 1. Compute o = argminaEAk{F(xk — aVyF(xk, yk), yk)}, where Ay = {o > 0: xx — o Vi F(xg, yx) €
U}, X1 = X — ok VaF (i, Y-
Step 2. Compute yj41 = argminyevg(xkﬂ, Y)-
Step 3. If x;1 = x* then stop. Otherwise, set k:=k + 1 and repeat Steps 1-3.
Theorem 3.3. Assume x* =argmin _;F(x) € U. Let xo € U and yo =yx, € V. Assume
Wo:={(x,y) e U x V:F(x,y) < F(xo,y0)} C U x V.
Let {xx}72 | be generated by the min—min algorithm. Then, x, = x* for some k > 0 or x; — x*.

Proof. Let us assume xi # x* for any k > 0 and show that x; — x*. Define for each k> 1 the set
Wy the same as Wy with (xg, o) replaced by (xx, yx). We first show the following statement for each
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k > 0: there exists a unique oy € Ay as defined in Step 1, the point (xi, yx) defined in the algorithm
satisfies (xg, yx) € int(Wy) and d® := V, F(xr, yi) # 0, F(Xks1, Vir1) < E(X, yx), and Wyyq € Wy

Consider k= 0. Since yg =y, = argminy 78(x0,Y) € V (cf. the assumption (A 3)), VyE(x0,0) =
Vyg(xo, yo) = 0. Since xg # x*, and since by lemma 3.2 (x*, yx+) € U x V is the unique minimizer of
Fover U x V, we have d©) := VF(xy, yo) # 0. It follows from Taylor’s expansion that

F(xo — ad®, yo) =F(xo, o) — a||dQ > + O(@?) < F(xo,y0)  if0<a < 1.

By the assumption that the closed set Wy C U x V and the strict convexity of F, there exists
a unique ag € Ap such that F(xo — aod(o),yg) <F(xg — ad(o),yo) for all « € Ag. Now x1 =x0 —
oo VF(x0,y0) € U and F(x1,y0) < F(x0,y0)- By Step 2 of the algorithm and the assumption (A 3),
Y1 =Yy, €V and F(x1,y1) < F(x1,y0) < F(x0,Y0)- It then follows from the definition of Wy that
(x1,11) € int(Wp) C U x V. Clearly, W1 € Wy. Thus, the statement is true for k=0. Suppose the
statement is true for k > 1. Using the above argument with (xo, yo) and W replaced by (xi, yx) and
Wy, respectively, we verify that the statement is also true for k + 1. Therefore, the statement is true
in general by induction.

We now prove xj — x*. Since {x;} is bounded, it suffices to show the following: if a subsequence
of {xx}, not relabelled, converges to some e U, then x =x*. First note that f(xk,yk) — F for
some FeR, as {F(x, yx)} is decreasing and bounded. Now, passing to a further subsequence
if necessary, we have (xx, yx) — (%, 7). By the above statement, (x, yk) € int(Wy) for all k. Hence
(&,7) € Wo C U x V. Therefore, it follows from the continuity of F that F= F(&, y) Note for each k
that VyF(xk,yk) = Vyg(xx, yx) = 0. Consequently, VyF(x ) = 0. We shall show thatd := V,F &, 1) =
This would imply that (%,) € U x V is the unique minimizer of F over U x V, and hence % = x*
by lemma 3.2 and x; — x*.

Assume d 0. Since (v, yx) — (&, ) and d® .=V, F(xg, ) — d, it follows from the same
argument used above that there ex1sts & > 0 and an integer ko > 1 such that F(k — &d, §)) < F(%, 1)),
x— ad, 7) emt(Wo) and (xp — ad®, yx) € int(Wp) if k>ko. Now, since F(xt,yx) decreases and
converges to F= F&,7) and yiy1 = yx, .1 (cf. the assumption (A 3) and Step 2 in the algorithm),
we have by the definition of x;y1 (cf. Step 1 in the algorithm) that for all k > ko

F(&,§) < Ftes1, Y1) < Fuisn, vie) = FCoe — od®, i) < Fe — ad®, ).
Taking k — oo, we get F(%,7) < F(& — ad, ) < F(%,7), a contradiction. Thus, d=0. [ |

We remark that the proof of the convergence of the min—min algorithm relies on the fact that
min, _7F(x) = min(w) Emf(x, y) and (x*, yy+) = (X, ) as established in lemma 3.2. Such structure
is lost for a max—min algorithm and therefore the method of proof of theorem 3.3 does not extend
directly to the convergence of a max-min algorithm.

() Aradially symmetric system for the solvation of a single ion

We apply the VISM to the solvation of a single ion placed at the origin (i.e. N=1 in figure 1).
The resulting system is simplified to be radially symmetric. Such a system is effectively one-
dimensional for which we can obtain a very accurate solution for testing our algorithms.

We set 2_={xeR3:|x|<R}, 2. ={xeR¥*:R<|x|<A} and I'={xeR3:|x| =R}, where
A,ReR with 0 <R <A, and denote y— = xqr) and x+ = xr,4).- The dielectric coefficient is
er :[0,A] > R with er(r) =e_ if r <R and er(r) =4 if r > R. The L] parameters for the single
ion are denoted by ¢ and o; cf. figure 1 and (3.1). We assume f : [0, A] - R is a smooth function,
g€ Rand p > 0. The electrostatic potential ¢ is assumed to be radially symmetric: ¢ = ¢(r) with
r=|x|. The dielectric displacement D is proportional to Vy(¢(r)) = ¢'(r)(x/r). Thus, we assume
D(x) = p(r)(x/r) for some radially symmetric function p = p(r). Since |D(x)| = |p(r)| and

2 1
VD)= p(n) +p'(r) = 5 (7p(),

we shall consider p = p(r) instead of D(x). We have p = —¢r¢’ if D= —¢p V.
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We denote w(r) = r? and define

A

H}U(O,A) ={¢:(0,A) — R: ¢ is weakly differentiable and J (6% + ¢ dr < o0}, (3.5)
0

Xg = (¢ € Hy,(0,A): p(A) = g), (3.6)

A
Y= { p:(0,A) = R:pis weakly differentiable and J [(rzp)2 (rzp) )2] dr < oo} (3.7)
0
2 , .
and Yfz{peY:;p—i—p =f1n(O,R)}. (3.8)

Both H&,(O,A) and Y are Hilbert spaces with their inner products and norms given, respectively,
by

A
@, v J @y +¢y)?dr and [19lle =0, ),
A
P9y = JO [(p)(rq) + (rz;o)/(rzqy]r—2 dr and [plly =, p)y-

Ifgpe Hi)(O,A) and 0 <8 < A, then ¢ € H'(8, A) and hence ¢ is absolutely continuous on [§, A], and
the trace ¢(A) is well defined. One verifies that Y = Hi)(O,A) NL20, A). If peY, thenpe H(s,A)
forany § € (0, A), and hence the trace p(A) is well defined. The equation in defining Y is (rzp(r))’ =
12f(r) for 0 < r < R, same as the constraint V- D =f in _ in the Cartesian coordinates for D(r) =
P /).

To compare the min-min and max-min algorithms, we now express the VISM solvation
free energy with the classical PB and the penalized LTPB electrostatic energies in the radially
symmetric setting. The non-polar part of the solvation free energy (i.e. the first three terms of
F[I'] defined in (3.1)) Fo : (0, A) — R and its boundary variation 6gFg : (0, A) — R are

12 6
3 2 g g
and
A 2)/01' 12 456

Note that the boundary variation §gFy differs from the derivative Fj(R) by the factor 47 R?; of.
[12].

Case 1. A continuum charge density. The VISM-PB free-energy functional F: (0, A) — R with
IR : Xg — R and the boundary variation §gF : (0, A) — R are now given by (cf. (1.4) and (3.1)-(3.3))

F(R)=Fo(R) + max Ir[o], (3.11)
A ER /2 2
IRlgl =4 | [~ 167+ 58— x1B@)] P ar (312)
0
and SRF(R)=beFo®) + 5 (- = 2= ) lerdh(RIP + BGr(R) 613

where ¢ = argmin¢ eXgI Rl¢]; cf. theorem 3.4. The penalized VISM-LTPB free-energy functional
F, :(0,A) - Rwith Jg , : Y — Rand its boundary variation égF;, : (0, A) — R are given by (cf. (3.1),
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(3.4), (1.10) and part (1) of theorem 3.1)

FuR) = FoR) -+ min [, 61y
a1 =t [ [ e b (1= (o)) 4 5 (7= (Goow )2 Pdr (1)

Rulpl =47 | | 5pt ) )+ o (= (e :
+ 4 gp(A)AZ, (3.16)

1 / /

SREW(R)=beFoR) + 5 (= = =) I (RIP +B (B (FR) ~ pi, (R) = (k)
! R (R 2 R ’ 3.17
o (PR = (R = Zpea(R)) 1)

where pr , = argmin,.yJr . [p]; cf. theorem 3.4.

Case 2. A single-point charge. With the point charge Q at the origin, the VISM-PB free-energy
functional F: (0,A) — R with Ir: Xg — R and the boundary variation § rE: (0,A) — R are given by
(cf. (3.1), (3.2), (2.6) and (3.3))

F(R) = Fo(R) + maxIr¢], (3.18)
5 _ Al xee [, Q \* xser [, Q \? >
IR[¢] = 4m JO [— > (¢> + 47{8772) I (¢> + 4ﬂ8+r2) — x+B(¢) | rdr
Q? 1 1\ 1 1
"8 [(a B Z) R~ eTA] (3.19)
“ 1 1
and R (R) = kFo(R) + 3 (Z - Z) [0k (R + B@r(R)), (3.20)

where ¢r =argmax,,. ng r[#]; cf. theorem 3.4. The penalized VISM-LTPB energy functional F Wt

(0,A) — R with 712# :Y — R and the boundary variation (SRZE 1 :(0,A) — R are now given by (cf.
(3.1), (3.4), (2.7) and part (2) of theorem 3.1)

Fu(R)=Fo(R) + r}yeigf&,t [p], (3.21)
R [ k(2 A% (2 ) g 2 N\ 24
N 1 G I L G ) R C R
Q2 1 1\ 1 1
T 8x [(a B :_) R~ 7] (5-22)

. 1 1 2 o 2
e (R =eFo®)+ 5 (= =) (pral® -+ gay )+ (B (<) = 2pea(ki)))

LI OV SN 3.23
_Z<pR,M( =)+ R PR —)) , (3.23)

where pr ,, = argminpeyfR,M [p]; cf. theorem 3.4.

We note that, while the radial symmetry of functions simplifies our models and computations,
the analysis in §2 does not directly apply here due to possible singularities at the origin. Thus,
we present here a similar analysis for the radially symmetric system, but only for the case of a
continuum charge density, as the case of point charges is similar. In appendix A, we also provide
a new and direct derivation of the boundary force in the one-dimensional setting. Let us define
Iry : Xg— RU{—~o0} and JRr: Yy — R U {00}, respectively, by

A
Iuddl=r | [~ 102 450 - 1eB0) - 55E4] Par (3249

L£/06707:08k ¥ 205 % 20l edsi/feuinof BioBuiysiignd/iaposiefor H



and
A 1 2 * 2 / 2 2
JrIp] =4nJ [—2 p-+ x+B (f — <7p +p ))] redr + 4w gp(A)A“. (3.25)
0 ER r

Theorem 3.4.

(1) Denote Irg=Ig. For each >0, there exists a unique ¢g, € Xy such that Ig,[¢r,]=
maxgeX, IR ;[¢]. Moreover, ¢r ;. € Xg is the unique solution to

j—;(#d)’ —pp=—f in(OR) and ‘j—;(r%’)’ —B(¢)=—f in(RA),

and e_¢’'(R—) = e1¢'(R+) and $p(A) =g.

(2) Duality. We have Ir[¢] < Jrlp] for any ¢ € Xy and p € Yy, and I ;,[¢] < Jr,u[p] forany p >0,
¢ € Xg and p € Y. Moreover, pr := —erp € Y5 and pry, := —erdy , € Y (u > 0) are the unique
minimizers of Jg over Yy and Jg,,, over Y, respectively.

(3) Convergence. We have ||¢r, — ¢rllo = 0, maxgeX, Ir ] — maXxgex, Ir[$], PR —
prlly = 0and minpey]R . [p] = minpey, Jrlp] as u — 0.

To prove theorem 3.4, we need the following lemma that summarizes some properties,
particularly the behaviour near r = 0, of the functions in H1 (0, A) (cf. (3.5)) and Y (cf. (3.7)):

Lemma 3.5. Let ¢ € HL(0,A) and p €Y. Define u(r) =r*p(r) and v(r)=r’¢(r)p(r) for 0 <r<A.
Then, sup_,_4 ~/T¢(r)| < 0o, u € HY(0, A) and u(r) = o(r*/?) as r — 0, and v e W0, A) and v(r) =

o(ryasr— 0.

Proof. Note for any 8 € (0, A) that ¢ e H 1(8,A) and hence ¢ is absolutely continuous on [§, A].
Hence,

A 2
()7 = {qs(A) —j 5) ds:|
A 2
<26(AY +2 (J &(6) ds)

A A
<2¢(A? +2 <J s2¢(s)? ds) (J s72 ds)
A
=2¢(A)? +2 (J sng’(s)zds) (% - %)

<2¢(A)? + §||¢||i vre (0, A).

Consequently, ré(r)? < 2A¢(A)* + 21917, ©0,4)
Since p € Y, we can directly verify that u € H(0,A), and hence u is absolutely continuous on

[0, A]. We must have u(0) := lim,_, o u(r) =0, since

J'A M(V)Z

0 12

if r € (0,A), and hence sup,_,_4 +/71¢(r)| < 0.

A
dr= J rzp(r)2 dr < o0.
0

Consequently,

u(r)2 = (J; 1/ (s) ds>2 < (L; 2 ds) (L; uls(z)z ds) = %’3 o(1l) asr—0,

and hence u(r) = 0(r*/2) as r — 0.
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Since v(r) = 72¢(r)p(r) (0 <r<A), wehave |[v]|p10,4) < lI9llolplly < oo. Consequently,
A A
|, wenar=[ 9@+ s0poriar

oty 2200

A 12 ;4 12
< (J ¢’ (r)? dr) <J ;’2;9(1f)2 dr)
0 0
A Y2 /oA 1
+ (JO o0y dr) (L (PP P dr)

=2[|9llollplly < oo.

< J 17/ (1) rp()] dr + J

1/2

Hence, v e WL1(0, A), it is absolutely continuous, and v(r) = /7¢(r)u(r)//r = o(r) as r — 0. |
Proof of theorem 3.4. (1) The proof of this part is standard; cf. [15,18,19].
(2) Let u >0, ¢ € Xg and p € Y. Since ¢(A) = g and lim, o+ r2¢(r)p(r) =0by lemma 3.5,

A A A
j po'r? dr = — J (*p) ¢ dr + gp(A)A? = — J (%p + p/> or* dr + gp(A)A”.
0 0 0
Consequently, by the fact that the Legendre transform of s = (u /2)s2 is & > £2/(2u1), we obtain

A1
01 < Ilo] +4 [ 5 ip -+ exg/ PP dr
0 4€R

A - 1
—ar | <f¢> — x+B(9) - 5E¢? + —p? +p¢’) P dr
0 ER

=4 J: {ﬁpz + X+ [(f— <§P +p/>> ¢ — B(¢)]

o [(1- (Brev)) o - o2} Par s amgpara?

corf [sp oo - Gron) o 550 Grer)) ]

+ 4 gp(A)A?
=JRulp] (3.26)

The inequality Ir[¢] < Jr[p] for any ¢ € X; and p € Y can be proved similarly.
By part (1), pr . = _8R¢;<,u satisfies

(Ppru) = (f — nor,)r* in(O,R) and (Ppru) =(f — B'(¢r,)r*  in (R A). (3.27)

These and the fact that ¢r, € X; imply that pr, €Y. Moreover, the first inequality in (3.26)
becomes an equality with ¢g, and pr, = _5R¢1/2,;4 replacing ¢ and p, respectively. The second
inequality in (3.26) also becomes an equality by (3.27) and the definition of the Legendre
transform. Thus, by the convexity of Jr ., pr . is the unique minimizer of Jz , over Y. Similarly,
PR is the unique minimizer of Jg over Yy

(3) By the same argument used in proving part (2) of theorem 2.3, we have ||¢r,, — ¢rllo — 0
and maxgex, Ir (] — maxgex, Ir[¢] as u — 0. These and part (2) imply ||pr,. — prlly — 0 and
minpeY]R,u[‘ﬁ] - minper]R[P] as u— 0. u
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Table 1. Model parameters. L) means Lennard—Jones.

parameters descriptions estimated values

T temperature 300 K
Popressured|fference ........................................................ G o
VO ......................................... s G kBT/AZ
e ToImanIength ............................................................... b i
,owbulksolventden5|ty ..................................................... e o
oIengthparametermLJpotennaI ................................... [ i
s - rgy p . rametermLJpote s e kBT ........
e relatvedelectricpermittivityin 2 I no unit
5+relat|veperm|tt|v|ty|n.9+ ........................................... L e

(d) Numerical results

In this section, we present numerical results of the solvation of a spherical molecule such as a
single ion. We first demonstrate that both the min—min algorithm for the VISM with the LTPB
formulation of electrostatics and the max—min algorithm for the VISM with the PB formulation
of electrostatics can achieve the same accuracy. Note that the two formulations are equivalent
(cf. theorem 2.1, theorem 2.2 and theorem 3.4). But the penalty method used to approximate
the constraint by Gauss’ law leads to approximation errors. Such errors converge to 0 as the
penalty parameter u — 0 (cf. theorem 2.3 and theorem 3.4). We then test and compare the two
algorithms in terms of a small number of iteration steps that are often designed for large-scale
molecular simulations. We finally show that the VISM with the LTPB electrostatics implemented
with our min-min algorithm can predict accurately the solvation free energy for a single ion. All
the model parameters we use for numerical simulations are taken from [3] and are summarized
in table 1.

(i) Comparison of the min—min and max—min algorithms with given tolerance to reach

We first consider a continuum charge density (cf. case 1 in §c) and compare the min-min
and max-min algorithms with a given tolerance. We set the continuum charge density to be
f(r)=(1000/ @)675072 and also set B(s) = s2/2 and g =0. We minimize the total solvation free
energy functionals F, = F,(R) defined in (3.14) and F = F(R) defined in (3.11) with minimizing
the corresponding LTPB electrostatic energy functional Jg, =]Jr.[p] defined in (3.15) and
maximizing the electrostatic energy functional Ir =Ir[¢] defined in (3.12), respectively, to
compare the minimized total free energy and the optimal radius. Three values of the penalty
parameter u and three different number N of grid points are tested. The conjugate gradient
method is used for minimizing the electrostatic energy functionals Jr, and —Ig (equivalently
maximizing Ig). The gradient descent method is used for minimizing the total free-energy
functionals F,, = F,(R) and F(R) to get the minimum value of free energy and also the minimizing
radius. The initial guess of the radius is Ry = 2.5. The tolerance for the L?-norm of the gradient is
chosen to be 107> and maximum iteration steps is set as 50 000. The iteration of the conjugate
gradient method is terminated if the tolerance or the maximum number of steps is reached.
Our results are shown in table 2. We observe that as > 0 gets smaller the error between the
min-min and max-min simulations also gets smaller. This is expected by the duality of two
formulations and the convergence of our penalty method; cf. theorem 3.4. Moreover, a moderate
value of p leads to the best performance of the min—min algorithm in terms of accuracy and
efficiency.
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Table 2. Results of min—min and max—min simulations for the continuum charge density f(r) = (1000/+/ 8r3)e 0,

min—min max—min

energy radius radius
103 250 1142.6829 3.1567 1s 1480.0782 2.7998 2s

min—min
energy
107" 250 —89.6644 27835 1s —89.6230 2.8000 12s

We now consider a single-point charge Q =1 placed at the origin, and set B(s) = cosh(s) — 1.
We use the nonlinear conjugate gradient method for the first minimization or maximization, and
then the gradient descent method for the second minimization for updating the radius R with
initial guess Ry =2. In the nonlinear conjugate gradient method, the tolerance for the L>-norm
of the gradient is chosen as 107> and maximum iteration steps is set as 100 000. We test on three
different values of the penalty parameter y and also three different numbers of grid point. Our
results are shown in table 3. We again observe that as i > 0 gets smaller the error between the
min-min and max—-min simulations also gets smaller, verifying the duality and the convergence
of our penalty method; cf. theorem 3.4. It is also clear that a moderate value of u again leads to
the best performance of the min-min algorithm in terms of accuracy and efficiency.

(i) Comparison of the min—min and max—min algorithms with a few steps of iterations

We set A =4, B(s) =52/2, f(r)=(1000/ \/871_3)6_50’2, and g = 0. All the units are the same as in [3]; cf.
table 1. We first minimize the total free energy F(R) with the initial guess Ryp =2.5 and a very fine
grid and many iteration steps to get an ‘exact’ minimum value Fpin = 1480.1331 and an ‘exact’
optimal radius Ryin =2.7960. We then apply the min-min algorithm to minimize the penalized
VISM-LTPB functional and apply the max—min algorithm to minimize the VISM-PB functional.
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Table 4. Numerical results for f(r) = (1000/ v/ 8773)e~>""" and three z1-values. The ‘Step’ means the number of steps in the
conjugate gradient iteration for minimizing Jg ,, and —/5. The ‘energy error’ and ‘radius error” are the relative error between the
numerical approximations and the ‘exact’ values Fyin and Riin, respectively.

min—min max—min

energy error radius error time energy error radius error time

The gradient descent method is used to minimize the total energy with initial guess Rg =2.5. The
conjugate gradient method with not so many iteration steps is used to minimize the LTPB energy
and maximize the PB energy. In table 4, we show our numerical results. We observe that in general
the min—-min algorithm performs much better than the max—-min algorithm with a small value of
w. For 24 = 1073, the min-min algorithm does not converge due to the large penalty coefficient
and small number of iteration steps.

We now compare the min-min and max-min algorithms for a single-point charge. We set
the charge at the origin to be Q=1 and consider B(s) = cosh(s) — 1. Other parameters are the
same as for the case of a continuum charge density. We use the gradient descent iteration to
minimize the total free energy F,, (R) with the initial guess Ry = 2, and use the nonlinear conjugate
gradient method to maximize 1 R, and minimize ij,/u respectively. The ‘exact’ minimum value
Fmin and the ‘exact’ minimizer R, are found by a very fine grid and many iteration steps to
be ﬁmin = —89.6208 and f{mm =2.7997. Table 5 shows our numerical results. We observe that in
general the min-min algorithm performs much better than the max—min algorithm in terms of the
computational accuracy and efficency. With a small but not so small u-value, such as 2, = 1071
or 1073, and with any of the number of grid points N, the min-min algorithm is more accurate
than the max-min algorithm. For 2 = 1072, the min-min and max-min algorithms perform
compatibly in terms of the accuracy.

(iii) Prediction of the solvation free energy for single ions

We apply our min—min algorithm to minimize the penalized total VISM-LTPB free energy for the
solvation of single ions K*, Na™, ClI~ and F~. For comparison, we also minimized the VISM-
PB free energy. Here, the function B is the hyperbolic cosine function, and all parameters are
taken from [3] and are listed in table 1. We set 2;1 = 10~2. The dielectric boundaries of the anion
Cl™ or F~ are obtained by shifting the VISM equilibrium surface by & = 1A, which is the length
of the water OH bond [3]. In table 6, we present our numerical results with comparison with
the VISM-CFA and VISM-PB computational results, and also with the experimental results. The
CFA, the Coulomb-field approximation, is an approximation of the electrostatics with a dielectric
boundary; cf. [41]. We see from table 6 that our numerical results fit well with the experimental
data, and for some cases, are better than those of the VISM-PB calculations. It is observed that the
free energy predicted by VISM-LTPB is always larger in magnitude than that by VISM-PB. This is
due to the extra penalty term in the penalty method that implements VISM-LTPB formulation.
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Table 5. Numerical results for a single-point charge Q = 1 placed at the origin. The ‘Step” means the number of steps in the
nonlinear conjugate gradientiteration forminimizingjgyu and —7R.The’energy error’is the relative error between the numerical
minimum value of I:'N and the ‘exact’ minimum value fmm. The ‘radius error” is the relative error between the numerical
minimizer ofl?u and the ‘exact’ minimizerf?min.

min—min max—min

energy error radius error time energy error radius error time

Table 6. The solvation free energy (in kgT) for each of the single ions K™, Na™, (I~ and F~ modelled as a single-point
charge computed with the VISM-LTPB model. The computational results based on the VISM-CFA and VISM-PB models and the
experimental results are also shown for comparison [3,42].

lons & (kgT) o (R VISM-CFA VISM-PB VISM-LTPB experiment

K+ 0.008 3.85 —-m7 —112.5760 —T112.5854 —117.5
S o T e e S
e T T e s T
I 9 3. -m6  —BoMw0 —1B.0%8 —1852

4. Conclusion

We constructed the LTPB electrostatic energy functional of dielectric displacements with
application to variational solvation of charged molecules that are characterized by the dielectric
boundary separating such solute molecules from the solvent. The solvation free energy in the
variational solvation model includes the surface energy, electrostatic energy and other energy
terms. The convexity of the LTPB energy functional makes it consistent with the minimization of
the total solvation free-energy functional.

We proved the duality between the convex LTPB functional and the classical concave PB
electrostatic energy functional. With a fixed dielectric boundary, we approximated our LTPB
functional of the dielectric displacements constrained by Gauss’ law on the solute region by
penalized LTPB functionals, removing the constraint. The convergence of this penalty method
was shown. Finally, we designed a min—-min method for minimizing the solvation free-energy
functional of all dielectric boundaries: in each iteration step of relaxing the dielectric boundary,
we minimize iteratively the LTPB electrostatic energy. The convergence of the min-min algorithm
was proved. Numerical tests on the solvation of single ions demonstrated the efficiency
and accuracy of our method, and for many cases, with suitably chosen penalty parameters
and number of iteration steps, the LTPB formulation was more stable than the classical PB
formulation.
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We now discuss some possible issues and point out possible improvements for future studies.
First, the explicit formula of the Legendre transform B* = B*(£) of a given convex function B = B(s)
is generally not available. One can, however, generate a table of values B*(§) for selected values
of & € [Emin, Emax], where the numbers &y and &max can be estimated from an underlying system.
Note that the function B = B(s) in the generalized PB theory with ionic size effect is only implicitly
defined [16,34,35]. One can, however, solve a system of nonlinear algebraic equations to obtain
B(s) for many selected s-values and then calculate B*(£) to generate a table.

Second, while our initial numerical tests have indicated that the LTPB formulation is better
than the classical PB formulation, the constraint of the dielectric displacements slowed down
the computations. Therefore, there is a need to construct a more efficient LTPB formulation for
modelling the electrostatics in molecular solvation.

Third, for large systems of molecular solvation, the level-set method can be used to
numerically relax the solvation free-energy functional with the LTPB formulation for the
electrostatic energy [3]. It will also be interesting to use the level-set method to minimize the
total solvation free energy of dielectric boundaries and compare the min-min and max-min
algorithms, and hence compare the LTPB and PB formulations.

Finally, our convergence analysis of the min—-min algorithm points out a new scheme of
minimizing a free-energy functional of two variables with one depending on the other. One can
view the free-energy functional as a two-variable functional and minimize it with respect to the
two variables; cf. lemma 3.2. In application to solvation, we can minimize the solvation free energy
with respect to both the dielectric boundary I" and the dielectric displacement D.

Data accessibility. The code and data are provided in the electronic supplementary material [43].
Declaration of Al use. We have not used Al-assisted technologies in creating this article.
Authors” contributions. Z.H.: conceptualization, data curation, formal analysis, investigation, methodology,
resources, software, validation, visualization, writing—original draft, writing—review and editing; B.L.:
conceptualization, formal analysis, funding acquisition, investigation, methodology, project administration,
resources, supervision, validation, writing—original draft, writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This work was supported in part by the US National Science Foundation (grant no. DMS-2208465).
Acknowledgements. The authors thank Prof. Li-Tien Cheng, Dr Benjamin Ciotti, Prof. Shuang Liu, Prof. Anthony
C. Maggs, Dr Zirui Zhang and Prof. Shenggao Zhou for helpful discussions. The authors also thank the
anonymous referees for their valuable comments and suggestions.

Appendix A

We derive the formula of the dielectric boundary force as negative energy variation for a
model problem. Let ¢, e € (0,00) with e #¢,. For any y €1:=(0,1), we define ¢, : [0,1] = R
by e,(x)=¢_ if x<y and ¢,(x)=¢y if x>y. Let f:[0,1] = R be a smooth function. Define
E, :H}(I) > R by

E,[¢]= Jol (%dz —f¢) dx Ve e H)(D.

Let ¢, € H(l)(l) be the unique minimizer of E, over H(l)(I) and denote e(y):=E,[¢,]=
min H aoEy [#]. The minimizer ¢, is the unique function in H(l) (I) such that

1
| @ep—piar=0 vaemio, (A1)
Equivalently, ¢, € H(l) (I) is the unique function satisfying ¢, |, € C%(I+) and

- 8i¢; =f inly and [[¢y]]y = [[SV¢;/I|V =0, (A2)

where I =(0,y) and I =(y, 1), and [[ull, =u(y+) — u(y —) for a given function u.
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The boundary force is defined as —¢'(y) if the derivative exits. Formulae for such forces for
more general problems in multi-dimensions and nonlinear Euler-Lagrange equations have been
obtained in [18,19]. Here, we give a totally different, direct and self-closed derivation of such a
force.

Proposition A.1. We have
1/1
(=3 (- ) oo

where g, ¢, (y) = e—¢), (v =) = e4+¢), (v +).

Proof. We first establish some bounds for ¢, and 8¢, := ¢, s, — ¢, (6, e Rand 0 <y + 38y <1).
Setting n = ¢, in (A1), we have by Poincaré’s inequality that ||¢, || H0) = C for all y €I, where

C > 0 is a constant independent of y € I. Since ¢,,(0) =0, we have ¢, (x) = IO qby (t)dt (x € I). Hence,
[1pyllLeqy < Cforall y el
Let 0 < y1 <y <y2 <1. By (A2) and the fact that ¢,, (1) =0, we have

Y
—erdy ) + ey )= | fOd We )
Y

and

1y
s+q>,,(x)+8+¢£,(y+)(1—x)=J' Jf(t)dtdy Vxe(y,1).

xJy

These and the uniform bound on ||¢y ||z~ imply that |¢), (y+)| < C(y1, 12), and hence |¢, (y)| <
C(y1,y2) for all y €[y, y2], where C(y1,y2) > 0 is a generic constant independent of y € [y1, 2]
Similarly, |¢;, ()| < C(y1,y2) for all y € [y1, v]. Thus, ||y [lwi~ (1)) < C1, 12) for all y € [y1, y2].

Let §y e R be such that 0 <y <y — |§¥]| <v + |8y| < 2 < 1. We shall assume that §y >0 as
the case 8y <0 is similar. Setting n=248¢, =¢, s, — ¢, in (A1) for ¢, and in (A1) with ¢, s,
replacing ¢, respectively, and subtracting one from the other, we obtain

1
JO Loy 3y (5y) + (e 3y — &), 1(5) dx =0,

This, together with the bound ||y [l ((34,1,)) < C(¥1, v2), implies that
1 ) 1
| ersar 0002 dx= | e = ey10)07 60,
y+5y ! / !
= (”_"E*)J ¢, (8¢y) dx < Cly1, v2)Voy I8y ) llr2ry Yy € [y1, val,
Y

where C(y1, y2) > 0 is independent of y and §y. Consequently,

1186y Il ) < Con 2oy Yy eln,pal. (A3)

We now calculate ¢'(y). Denote de,, =e(y + 8y) — e(y) with 8y > 0 as assumed above. By (A1)
with n =8¢, for ¢, and (A1) with ¢, s, replacing ¢,, we obtain

se 1 (11 ° 1,
=iy I 37t = 30re s s

1 1
=55y L [y 15y 7rs, — Ev®) — Eyioy®) s, (D15, — &) — £y8),($), 15, — &))]dx
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1 1
= M JO (5y+6y - 8V)¢;/+§y¢;/ dx

. E_—&4
28y

V+5y / /
J Pysy Py dx
y

_— 1 (r+dy
=2 28+ |: Jy ¢;/+§y(x)[¢;/(x) - ¢;,()/+)] dx +

o, (v+) (r+or
Sy ) J

#,15,() dx}
E_—&4

=—— (i +D) (A4

It follows from (A 2), the Cauchy-Schwarz inequality, and the bound ||¢y |17y < C that

1 (r+oy / o
= ‘g L &5, () (L o) dy) dx

1 (v, o1
_ \5 L 05, (0) (L -0) dy) dr

<C/sy, (A5)

where C > 0 is a constant independent of y and §y.

We have
/ /
h= ¢y§)}’/+) [ Jy+6y 525 (3) = J:_ay 8 dx} N %;ZH LV_M ¢, () dx =11 + Ly (A6)
Clearly,
/

22 = d’V;Z” Ly_ay 9, () dx — ¢ (/)0 (y-) as by 0. (A7)

By the change of variable, we get

Iy

_ ¢y, (v+) JV

- [0 45, (y + 8¥) — &, (1) ]dy

y—8y

¢, (v +)

¢/ ()/+) 7 4 / 4 ’ ’
_ % L_Sy[%w(y +0¥) = b, 45,W)]dy + 5y L_Sy[aﬁyw(y) —¢,,(y)]dy

%
=11+ Dy (A8)
It follows from (A 2) that

¢, (y+) JV
i1=

5y 5y [¢;+5y (y+dy) — ¢;+5y(]/)]d]/

y—

#,(v+) 7 y+oy
L[ o]
y—oy

e L ] a
y

3% y—dy &e_
—0 asdy —0. (A9)

By (A 2) again, we have

1 " 1 1
60,/ 0) =15, 0) 5500~ () + (- ) =0 wwetr =sy).
Hence, (8¢,) =a on (y — 8y, y) for some constant a € R. By (A 3), a = 0. Therefore,

¢, (v+) ¢y, (v+)
v

y
Sy Jy—sy[¢y+‘37’ ) — ¢, Wldy = L

y
o= J (8¢,) (y) dy =0. (A 10)
y—dy
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It now follows from (A 4) to (A 10) and the jump condition in (A 2) that

= tim 57 = Je ey = 5 (= - ) gy R

y—0 &y T2 2 \ey e
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