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Solving interface problems with deep learning

Introduction of some DNN-based PDE solver

Deep Ritz method: Solve Possion problems and eigenvalue problems
from variational principles.

PINN & DGM: Train DNNs to approximate the solution by
minimizing the residual of the PDEs and also of the initial and
boundary conditions.
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Deep Ritz method

Deep Ritz method: Deep NN + Ritz method, for solving variational
problem. If we want to solve the following Possion’s equation:{

−∆u = f in Ω,

u = g in ∂Ω.

It is equivalent to
min
u∈H

I(u)

where

I(u) =

∫
Ω

(
1

2
|∇u(x)|2 − f(x)u(x)

)
dx

and
H = {u ∈ H1(Ω) : u = g on ∂Ω}
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Solving interface problems with deep learning

Figure 1: A network with two blocks and an output linear layer. Each block
consists of two fully-connected layers and a skip connection.
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Solving interface problems with deep learning

Building trial function

The basic component of DR method is a nonlinear transformation

x ∈ Rn → uθ(x) ∈ R

defined by a deep neural network.
The i-th block can be expressed by

t = fi(s) = ϕ (Wi,2 · ϕ (Wi,1s+ bi,1) + bi,2) + s

where Wi,1,Wi,2 ∈ Rm×m,bi,1,bi,2 ∈ Rm and ϕ is the activiation function.
The full n-block network can be expressed as

uθ(x) = fn ◦ fn−1... ◦ f1(x)

where θ represents all the parameters in the neural network.
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Building trial function

Denote

h(x; θ) =
1

2
|∇xu(x; θ)|2 − f(x)u(x; θ)

Then original problem{
minu∈H I(u),

I(u) =
∫
Ω

(
1
2 |∇u(x)|2 − f(x)u(x)

)
dx

will be converted to a numerical optimization problem:{
minθ L(θ),

L(θ) =
∫
Ω h(x; θ)dx
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Building trial function

Since u belongs to admissible set H, where

H = {u ∈ H1(Ω) : u = g on ∂Ω}.

In real, we will use a penalty method and the numerical optimization
problem should be:

min
θ

L(θ),L(θ) =

∫
Ω
h(x; θ)dx+ β

∫
∂Ω

(u− g)2dx

≈
∫
Ω

(
1

2
|∇xu(x; θ)|2 − f(x)u(x; θ)

)
dx+

β

∫
∂Ω

(u(x; θ)− g)2dx

where β is the penalty coefficient.
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Solving interface problems with deep learning

Stochastic gradient descent and numerical quadrature rule

Combined with Monte Carlo Sampling, the optimization problem often
takes the form of:

min
θ

L(θ),L(θ) =
1

N

N∑
i=1

Li(θ)

where each Li(θ) corresponds to a data point and N is typically very large.
SGD in this context is given by

θk+1 = θk − η∇θ
1

N

N∑
j=1

h(xj,k; θ
k)

where {xj,k} is a set of points in Ω that are randomly sampled with
uniform distribution.
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Solving interface problems with deep learning

Conclusion

Advantages:

It is less sensitive to the dimensionality of the problem and has the
potential to work in rather high dimensions.

The method is reasonably simple and fits well with the stochastic
gradient descent framework commonly used in deep learning.

Zunding Huang (UCSD - ML Seminar) Solving interface problems with deep learning 10/27/2023 10 / 37



Solving interface problems with deep learning

Interface problems (usually in molecular solvation)

Interface problems have many applications in physics and biology.

Heterogeneous porous medium in the reservoir simulation, the
permeability field is often assumed to be a multiscale function with
high-contrast and discontinuous features.

Evolution of the shape and location of fibroblast cells under stress.
The cell is modeled as a transformed inclusion in a linear elastic
matrix and the cell surface evolves according to a kinetic relation.

Today we will mainly talk about the first type of the PDE: It is an elliptic
PDE with a discontinuous and high-contrast coefficient.
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Dielectric boundary

Figure 2: (Left) A schematic diagram of charged molecules immersed in an
aqueous solvent. The region of solvation Ω is divided by the solute.
(Right) A diagram of charged molecules where the region Ω is the cube [−1, 1]3

and the dielectric boundary Γ is a sphere.
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Solving interface problems with deep learning

Interface problems

Some numerical methods for interface problems include finite element
method and finite difference method:

Immersed-interface FEM: Second-order convergence in L2 norm and
first-order convergence in H1 semi-norm. The constants in the error
estimate may depend on the contrast of the coefficient.

Another FEM: Use coarse quasi-uniform meshes. The constants in
the error estimate are independent of the contrast of the coefficients.

Immersed boundary method: Study the motion of surfaces immersed
in an incompressible fluid.

Immersed interface method: Combine the jump condition with finite
difference schemes near the interface, second order convergence.

Ghost fluid method: Incorporated the jump condition into the finite
difference schemes with a level set function.
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Solving interface problems with deep learning

Interface problems

Let Ω be a C2, closed surface such that Γ ⊂ Ω. Denote Ω− the interior of
Γ and Ω+ = Ω\Ω−. So, Ω = Ω− ∪ Ω+ ∪ Γ. Here, Ω− and Ω+ are the
solute and solvent regions, respectively, and Γ is the dielectric boundary.
As before, we denote by n the unit normal at Γ pointing from Ω− to Ω+.
Dielectric coefficient εΓ : Ω → R defined as εΓ = ε− in Ω− and εΓ = ε+ in
Ω+, where ε− and ε+ two distinct positive constants.
Typically, interface problems will be like:{

−∇ · εΓ∇u = f in Ω,

u = g in ∂Ω.

with some additional assumptions: u and εΓ∇u · n is continuous over Γ.
This implies [[u]] = [[εΓ∇u · n]] = 0 on Γ.
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Solving interface problems with deep learning

Interface problems

Above interface problems can be rewritten as:
ε−∆u = −f in Ω−,

ε+∆u = −f in Ω+,

[[u]] = [[εΓ∇u · n]] = 0 on Γ,

u = g in ∂Ω.

To apply Deep Ritz method to interface problems, we need to formulate
the elliptic PDEs into the variational form. The energy of the system
should be

I(v) =

∫
Ω

(εΓ
2
|∇v(x)|2 − f(x)v(x)

)
dx,

and v belongs to admissible set H = {v ∈ H1(Ω) : v = g on ∂Ω}. So
u = argminv∈HI(v).
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Inhomogeneous boundary conditions

Instead of penalty method, we will use a shallow neural network to
approximate the boundary condition g(x).

Figure 3: Neural Network configuration for g̃ and u′.
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Solving interface problems with deep learning

Inhomogeneous boundary conditions

Here g̃ is the approximation of g. It is defined as

g̃ = argminG∈G

(∫
∂Ω

(G− g(x))2dx

)
.

where G denotes the set of all expressible functions by a shallow neural
network. This can be approximated by

vol(∂Ω)

N0

N0∑
i=1

(G(yi)− g(yi))
2.

where yi ∼ Uniform(∂Ω).
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Solving interface problems with deep learning

Inhomogeneous boundary conditions

For inhomogeneous Dirichlet problem{
Lu = f in Ω,

u = g on ∂Ω.

Once we have approximation g̃, we can solve the following homogeneous
Dirichlet problem: {

Lu′ = f − Lg̃ in Ω,

u′ = 0 on ∂Ω.

Final solution u of original problem can be expressed by:

u = u′ + g̃
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Conclusion for now

Advantages:

We solve PDEs through their corresponding variational problems,
which avoids the need to compute high-order derivatives of the
solution.

A shallow neural network to approximate boundary condition allows
us to simply impose inhomogeneous boundary conditions and reduce
computational costs in the training process.

Zunding Huang (UCSD - ML Seminar) Solving interface problems with deep learning 10/27/2023 19 / 37
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Elliptic PDEs with discontinuous and high-contrast coefficients

We consider homogeneous elliptic PDEs with discontinuous coefficients:{
Lu = −∇ · (a(x)∇u(x)) = f in Ω,

u = 0 on ∂Ω.

a(x) can be piecewise constant function. The variational problem is

J(v) =

∫
Ω

(
a(x)

2
|∇v(x)|2 − f(x)v(x)

)
dx, v ∈ H1

0(Ω),

and the total functional in terms of θ is

J(x; θ) =

∫
Ω

(
a(x)

2
|∇xv(x; θ)|2 − f(x)v(x; θ)

)
dx+

1

ε

∫
∂Ω

v(x; θ)2dS.
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Elliptic PDEs with discontinuous and high-contrast coefficients

In order to exploit SGD method, we need calculate following:

∂J(x; θ)

∂θk
=

∫
Ω

∂

∂θk

(
a(x)

2
|∇xv(x; θ)|2 − f(x)v(x; θ)

)
dx

+
1

ε

∫
∂Ω

∂
(
v(x; θ)2

)
∂θk

dS,

≈ vol(Ω)

N1

N1∑
i=1

∂

∂θk

(
a(xi)

2
|∇xv(xi; θ)|2 − f(xi)v(xi; θ)

)

+
vol(∂Ω)

εN2

N2∑
j=1

∂
(
v(yj; θ)

2
)

∂θk
.
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Solving interface problems with deep learning

Elliptic PDEs with discontinuous and high-contrast coefficients

Here xi ∼ Uniform(Ω) and yj ∼ Uniform(∂Ω). N = N1 +N2 is called the
batch number in the context of deep learning, which implies the number of
collocation points used in one iteration.
The parameters θk can be updated by

θn+1
k = θnk − η

∂J(x; θ)

∂θk
|θk=θnk

.
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Numerical tests

Let Ω = [−1, 1]2 and x = (x1, x2). The coefficient a(x) is a piecewise
constant defined by

a(x) =

{
a1, r < r0,

a0, r ≥ r0.

where r = (x21 + x22)
1
2 and r0 = π/6.28. Source function f(x) = −9r and

boundary function g(x) = r3

a0
+ ( 1

a1
− 1

a0
)r30.

Based on the the info we have, the unique exact solution is

u(r, θ) =

{
r3

a1
, r < r0,

r3

a0
+ ( 1

a1
− 1

a0
)r30, r ≥ r0.
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Numerical test1

Choose a0 = 103, a1 = 1.

Figure 4: Profile of the coefficient.
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Figure 5: .Zunding Huang (UCSD - ML Seminar) Solving interface problems with deep learning 10/27/2023 25 / 37



Solving interface problems with deep learning

Numerical test1

Batch size is 4096 = 3840 + 256, η = 5× 10−4. Data size is about 1GB
and iteration for 3× 105 steps costs about 3700 seconds.

Figure 6: Solution profile at different stages: initial guess, local minimum, global
minimum.
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Choose a0 = 1, a1 = 103. The other setting is the same as the first
experiment.
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Numerical test2

The Lagrangian functional has instant fluctuations during the optimization
process. However, it does not get stuck at a local minimum. The error
function is a monotonic decreasing function. Finally, the error is reduced
to about 2%.
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Numerical test3

For a0 > a1, we want to investigate the convergence speed when the DNN
method gets stuck at a local minimum.

Figure 7: Histogram of the number of steps to get out of local minima.
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Numerical test3

We observe that a higher contrast in the coefficient will lead to a slower
convergence in the DNN method. When the contrast is higher, the
optimization process of the DNN method has a bigger chance to get stuck
at a local minimum. We also observe that about 7% of trials failed to
converge within the designed steps.
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Numerical test4

To show the benefit of the mesh-free nature of the DNN method, we
consider following 2D elliptic PDE defined on a closed disk
Ω = {x : |x| < 1}, where a0 = 103, a1 = 1, f(x) = −9r, g(x) = 0.

DNN method can be used to solve PDEs defined in irregular domains.
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Numerical test5

To study the performance of our method on parameters (batch size,
learning rate) that may that determine the accuracy of the DNN method,
we consider a 2D interface problem, where Ω = [0, 1]2, and coefficient
a(x) contains high-contrast channels, in order to mimic complicated
permeability fields.
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Numerical test5

Figure 8: Profile of FEM solution, DNN solution, error

Batch size is 4096 = 3840 + 256, η = 2× 10−3,L2 relative error is 3%.
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Numerical test5

If we choose different batch size N, this will affect the performance.

The setting of the batch number is essential in the accuracy of the DNN
method.
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Numerical test5

Different learning rate η will also affect the performance.

Figure 9: L2 error with different learning rate η.

The setting of the batch number is essential in the accuracy of the DNN
method.
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Conclusion

We parameterize the PDE solutions by using the ReLU-DNNs and solve
the interface problems by searching the minimizer of the associated
optimization problems.

The proposed method is easy to implement and mesh-free since we do
not need any special treatment to deal with the interface and
boundary.

We use the DNN method to solve elliptic PDEs with discontinuous
and high-contrast coefficients. ReLU-DNN with enough hidden layers
and neurons can approximate the solutions well.

The batch number in the SGD affects the accuracy of the
approximation and DNN method is not sensitive to the learning rate.

The convergence rate for the DNN method is unknown. The issue of
local minima and saddle points in the optimization problem is highly
nontrivial.
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Thank you!
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