
Solving PDEs with Neural Network

Zunding Huang

UC San Diego

04/17/2023

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 1 / 32

Outline

1 Deep Ritz method, Physics-informed neural networks (PINN)

2 Implementation and results

Solving PDEs with Neural Network

Deep Ritz method

Ritz Galerkin method: A direct method to find an approximate
solution for boundary value problems, where the differential equation
for a physical system can be formulated via minimization of a
quadratic function representing the system energy and the
approximate solution is a linear combination of the given set of the
basis functions.

Deep Ritz method: Deep NN + Ritz method, for solving variational
problem.

If we want to solve the following Possion’s equation:{
−∆u = f in Ω,

u = g in ∂Ω.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 3 / 32

Solving PDEs with Neural Network

Deep Ritz method

It is equivalent to
min
u∈H

I(u)

where

I(u) =

∫
Ω

(
1

2
|∇u(x)|2 − f(x)u(x)

)
dx

and
H = {u ∈ H1(Ω) : u = g on ∂Ω}

Deep Ritz method is based on:

1. Deep neural network based approximation of the trial function

2. A numerical quadrature rule for the functional

3. An algorithm for solving the final optimization problem

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 4 / 32

Solving PDEs with Neural Network

Building trial function

The basic component of DR method is a nonlinear transformation

x ∈ Rn → zθ(x) ∈ Rm

defined by a deep neural network. Here θ represents parameters, typically
weights and biases in the neural network.
In the paper, the author uses an architecture that each layer of the
network is constructed by stacking several blocks. The i-th block can be
expressed by

t = fi(s) = ϕ (Wi,2 · ϕ (Wi,1s+ bi,1) + bi,2) + s

where Wi,1,Wi,2 ∈ Rm×m,bi,1,bi,2 ∈ Rm and ϕ is the activiation function.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 5 / 32

Solving PDEs with Neural Network

Figure 1: A network with two blocks and an output linear layer. Each block
consists of two fully-connected layers and a skip connection.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 6 / 32

Solving PDEs with Neural Network

Building trial function

The full n-block network can be expressed as

zθ(x) = fn ◦ fn−1... ◦ f1(x)

where θ represents all the parameters in the neural network.
We should be careful here since the input x is in Rd instead of Rm so we
should apply a linear transform on x.
Once having zθ(x), we obtain u by

u(x; θ) = a · zθ(x) + b

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 7 / 32

Solving PDEs with Neural Network

Building trial function

Denote

h(x; θ) =
1

2
|∇xu(x; θ)|2 − f(x)u(x; θ)

Then original problem{
minu∈H I(u),

I(u) =
∫
Ω

(
1
2 |∇u(x)|2 − f(x)u(x)

)
dx

will be converted to a numerical optimization problem:{
minθ L(θ),

L(θ) =
∫
Ω h(x; θ)dx

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 8 / 32

Solving PDEs with Neural Network

Building trial function

Since u belongs to admissble set H, where

H = {u ∈ H1(Ω) : u = g on ∂Ω}

In real, we will use a penalty method and the numerical optimization
problem should be:

min
θ

L(θ),L(θ) =

∫
Ω
h(x; θ)dx+ β

∫
∂Ω

(u− g)2dx

≈
∫
Ω

(
1

2
|∇xu(x; θ)|2 − f(x)u(x; θ)

)
dx+

β

∫
∂Ω

(u(x; θ)− g)2dx

where β is the penalty coefficient.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 9 / 32

Solving PDEs with Neural Network

Stochastic gradient descent and numerical quadrature rule

In deep learning, the optimization problem often takes the form of:

min
θ

L(θ),L(θ) =
1

N

N∑
i=1

Li(θ)

where each Li(θ) corresponds to a data point and N is typically very large.
Some optimization methods used in deep learning:

1. Gradient Descent

2. Stochastic Gradient Descent

3. Adam, an updated version of SGD

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 10 / 32

Solving PDEs with Neural Network

Stochastic gradient descent and numerical quadrature rule

At each step of the SGD iteration, one chooses a mini-batch of points
to discretize the integral. These points are chosen randomly and the
same quadrature weight is used at every point.

Notice: If we use standard quadrature rules to discretize the integral,
then we are bound to choose a fixed set of nodes. In this case, we run
into the risk where the integrand is minimized on these fixed nodes
but the functional itself is far from being minimized.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 11 / 32

Solving PDEs with Neural Network

Stochastic gradient descent and numerical quadrature rule

SGD in this context is given by

θk+1 = θk − η∇θ
1

N

N∑
j=1

h(xj,k; θ
k)

where {xj,k} is a set of points in Ω that are randomly sampled with
uniform distribution.
Question: How to calculate the gradient with respect to x?
Answer: Just use finite difference scheme to approximate.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 12 / 32

Solving PDEs with Neural Network

Numerical results

The first problem is Possion’s equation in two dimension:
Ω = [−1, 1]× [−1, 1]{

−∆u(x, y) = 1 in Ω,

u(x, y) = −(x2 + y2)/4 on ∂Ω.

The true solution to this problem is

u(x, y) = −(x2 + y2)/4.

in whole region Ω.
We choose penalty coefficient β = 500, the number of grid points in Ω is
N1 = 600 and the number of grid points on ∂Ω is N2 = 60.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 13 / 32

Solving PDEs with Neural Network

Figure 2: (Left) The value of loss vs. the number of iterations.
(Right) The relative L1-error between numerical solution and true solution vs. the
number of iterations.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 14 / 32

Solving PDEs with Neural Network

Figure 3: The absolute error between numerical solution and true solution in the
whole computational region Ω.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 15 / 32

Solving PDEs with Neural Network

Numerical results

The second problem is Possion’s equation in R10:{
∆u(x) = 0 in Ω,

u(x) = x1x2 + x3x4 + x5x6 + x7x8 + x9x10 on ∂Ω.

where
Ω = {x ∈ R10 : ∥x∥ < 1}.

The true solution to this problem is

u(x) = x1x2 + x3x4 + x5x6 + x7x8 + x9x10.

in whole region Ω.
We choose penalty coefficient β = 500, the number of grid points in Ω is
N1 = 1000 and the number of grid points on ∂Ω is N2 = 2000.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 16 / 32

Solving PDEs with Neural Network

This is the experiment for N = 5000.

Figure 4: (Left) The value of loss vs. the number of iterations.
(Right) The relative L2-error between numerical solution and true solution vs. the
number of iterations.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 17 / 32

Solving PDEs with Neural Network

This is the experiment for N = 100, 000.

Figure 5: (Left) The value of loss vs. the number of iterations.
(Right) The relative L2-error between numerical solution and true solution vs. the
number of iterations.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 18 / 32

Solving PDEs with Neural Network

Numerical results

For the experiment with N = 100, 000, we have

The L2 relative error on the test set is 0.0254205,

Training costs 3002 seconds,

Whole model has 561 parameters.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 19 / 32

Solving PDEs with Neural Network

Conclusion

Advantages:

It is less sensitive to the dimensionality of the problem and has the
potential to work in rather high dimensions.

The method is reasonably simple and fits well with the stochastic
gradient descent framework commonly used in deep learning.

Future Work:

The variational problem that we obtain at the end is not convex. The
issue of local minima and saddle points is non-trivial.

There is no consistent conclusion about the convergence rate.

The treatment of the essential boundary condition is not as simple as
for the traditional methods.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 20 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

PINNs - Neural networks that are trained to solve supervised learning
tasks while respecting physical laws (PDEs)

Identify a nonlinear map from a few, potentially very high dimensional
input and output pairs of data

However, many physical and biological systems consist of prior
knowledge encoded in physical laws

This prior information can act as a constraint that reduces the space
of admissible solutions, remove unrealistic solutions that violate
fundamental conservation laws

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 21 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

Consider following PDEs:

ut + N (u; λ) = 0

Data-driven solution — When λ is a known, how to find the unknown
solution u(t, x)?

Data-driven discovery of PDEs — When λ is an unknown, how to
find the solution u(t, x) and fix λ simultaneously?

PDEs:

Need both initial conditions and boundary conditions

Point Collocation methods: Function Approximation + point
evaluation

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 22 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

Parameterized, nonlinear PDE(s)

ut + N (u; λ) = 0, x ∈ Ω ⊂ Rd, t ∈ [0,T]

where u(t, x) denotes the latent solution, N (·; λ) is a nonlinear
operator parametrized by λ.

The above setup covers a wide range of PDEs in math and physics,
including conservation laws, diffusion, reac-diff. E.g. Burger’s
equation:

N (u; λ) = λ1u · ux − λ2uxx, λ = (λ1, λ2)

Given λ what is u(t, x) (Data-driven solutions of PDEs)

Find λ that best describes observations u(ti, xj) (Data-driven
discovery of PDEs)

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 23 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

Rewrite the PDE as f(u; t, x) = 0

f(u; t, x) = ut + N (u; λ)

along with u = uθ(t, x).

The loss function of PINN parameterized by θ is given by
L = Lu + Lf where

Lu =
1

Nu

Nu∑
i=1

|u(tiu, xiu)− ui|2,Lf =
1

Nf

Nf∑
i=1

|f(tif , xif)|2

Here {t iu, x iu, ui}
Nu
i=1 denote the initial and boundary training data on

u(t, x) and {t if , x if }
Nf
i=1 specify the collocation points for f(u; t, x).

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 24 / 32

Solving PDEs with Neural Network

Figure 6: Continuous Time Models.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 25 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

Schrödinger equation:
f = iht + 0.5hxx + |h|2h = 0, x ∈ [−5, 5], t ∈ [0, π/2]

h(0, x) = 2sech(x),

h(t,−5) = h(t, 5),

hx(t,−5) = hx(t, 5)

Total loss is given by L = L0 + Lb + Lf = Lu + Lf where

L0 =
1

N0

N0∑
i=1

|h(0, xi0)− hi0|2,Lf =
1

Nf

Nf∑
i=1

|f(tif , xif)|2

Lb =
1

Nb

Nb∑
i=1

(
|hi(tib,−5)− hi(tib, 5)|2 + |hix(tib,−5)− hix(t

i
b, 5)|2

)
Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 26 / 32

Solving PDEs with Neural Network

Figure 7: Schrödinger equation: N0 +Nb = 150,Nf = 20000.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 27 / 32

Solving PDEs with Neural Network

Physics Informed Neural Network

h(t, x) = u(t, x) + iv(t, x) using a 5-layer deep neural network with
100 neurons per layer.

The choice is purely empricial (no theoretical basis).

Fine-tune the design of the DNN.

Potential issues: Continuous time models require a large number of
collocation points through the domain.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 28 / 32

Solving PDEs with Neural Network

Examples of Physics Informed Neural Network

Solve the following 2-D problem in Ω = [0, 1]× [0, 1]:

uxx − uyyyy = (2− x2)exp(−y) in Ω,

uyy(x, 0) = x2,

uyy(x, 1) = x2/e,

u(x, 0) = x2,

u(x, 1) = x2/e,

u(0, y) = 0,

u(1, y) = exp(−y) on ∂Ω.

where the true solution is

u(x, y) = x2exp(−y) in Ω.

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 29 / 32

Solving PDEs with Neural Network

Examples of Physics Informed Neural Network

Define following loss functions:

L1 =
1
N1

∑
(xi,yi)∈Ω(uxx(xi, yi; θ)− uyyyy(xi, yi; θ)− (2− x2i)exp(−yi))

2,

L2 =
1
N2

∑
(xi,yi)∈[0,1]×{0}(uyy(xi, yi; θ)− x2i)

2,

L3 =
1
N3

∑
(xi,yi)∈[0,1]×{1}(uyy(xi, yi; θ)− x2i /e)

2,

L4 =
1
N4

∑
(xi,yi)∈[0,1]×{0}(u(xi, yi; θ)− x2i)

2,

L5 =
1
N5

∑
(xi,yi)∈[0,1]×{1}(u(xi, yi; θ)− x2i /e)

2,

L6 =
1
N6

∑
(xi,yi)∈{0}×[0,1] u(xi, yi; θ)

2,

L7 =
1
N7

∑
(xi,yi)∈{1}×[0,1](u(xi, yi; θ)− exp(−yi))

2,

and
L = ω1L1 + ω2L2 + ω3L3 + ω4L4 + ω5L5 + ω6L6 + ω7L7

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 30 / 32

Solving PDEs with Neural Network

Conclusion

Advantages:

PINN, a new class of universal function approximators that are
capable of encoding any underlying physical laws.

Questions:

How deep/wide should the neural network be? How much data is
really needed?

Does the network suffer from vanishing gradients for deeper
architectures and higher order differential operators? Could this be
mitigated by using different activation functions?

Can we improve on initializing the network weights or normalizing the
data? Loss function weight choices?

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 31 / 32

Solving PDEs with Neural Network

Thank you!

Zunding Huang (UC San Diego) Solving PDEs with Neural Network 04/17/2023 32 / 32

