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Abstract

This work concerns both the classical and the ionic size-modified Poisson–Boltzmann
(PB) models of the continuum electrostatics for an ionic solution with different cases of
charges involved. A unified approach is developed to analyze the minimizers of the PB
electrostatic free-energy functionals of ionic concentrations and the solutions to the corre-
sponding PB and the generalized PB equations. Key results of the analysis are the uniform
positive bounds for the equilibrium concentrations and the uniform bounds for the solutions
of the PB equations. Penalized and constraint-free PB energy functionals are constructed
that can be used for solving the underlying variational problems and partial differential
equations by machine learning with application to complex charged molecular systems. In
addition to the existence and uniqueness of minimizers of such new functionals, uniform
bounds with respect to the penalization parameters are obtained for such minimizers. The
convergence of the penalized models is finally established.
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1 Introduction

We consider an ionic solution with M(≥ 1) ionic species, occupying a bounded region Ω ⊂ R3

and study two electrostatic free-energy functionals of the ionic concentrations. One is the
classical and the other an ionic size-modified Poisson–Boltzmann (PB) functional of the ionic
concentrations. They are given by the following unified form [2, 3, 5, 12, 13, 14, 20, 21]:

F [c] =

∫
Ω

[
1

2
ρϕ+ S(c)−

M∑
i=1

µici

]
dx, (1.1)

where c = (c1, . . . , cM) with ci : Ω → [0,∞) denoting the concentration of ions of the ith
species (i = 1, . . . ,M). The first part of F [c] is the electrostatic potential energy. The function
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ρ : Ω → R is the charge density, defined by ρ = f +
∑M

i=1 qici, where f : Ω → R is a given
function representing a fixed charge density and each qi is the charge of an ion of the ith ionic
species (1 ≤ i ≤M). The function ϕ : Ω → R is the electrostatic potential, uniquely determined
as the solution to the boundary-value problem of Poisson’s equation{

∇ · ε∇ϕ = −ρ in Ω,

ϕ = g on ∂Ω,
(1.2)

where ε : Ω → R is the dielectric coefficient which is a known function assumed to satisfy

εmin ≤ ε(x) ≤ εmax ∀x ∈ Ω, (1.3)

with εmin and εmax two positive constants, and g : ∂Ω → R is a given function. The second part
of the free-energy function F [c] in (1.1) is the entropy, defined by

S(c) =


β−1

M∑
i=1

ci
[
log(Λ3ci)− 1

]
without the size effect,

β−1

M∑
i=0

ci [log(vici)− 1] with the size effect,

(1.4)

where β = (kBT )
−1 with kB the Boltzmann constant and T the temperature. Here and below,

log denotes the natural logarithm. For the case of no ionic size effect included, Λ > 0 is the
de Broglie wavelength, a known cut-off length. For the case of the ionic size effect included,
the summation is from i = 0 to i = M . For each i with 1 ≤ i ≤ M , vi denotes the effective
volume of an ion of the ith species. The term for i = 0 is the entropy of the solvent, where
c0 : Ω → [0, v−1

0 ] is the solvent concentration, defined by
∑M

i=0 vici = 1, i.e.,

c0 = v−1
0

(
1−

M∑
i=1

vici

)
in Ω, (1.5)

where v0 is the effective volume of a solvent molecule. The last part of F [c] in (1.1) is the
Lagrange multiplier for the constraint of the conservation of ionic concentrations, where µi

(1 ≤ i ≤ M) is the chemical potential for the ith ionic species. In the model, all T , Λ, qi, µi,
and vi for all i are known constants.

Heuristically, the functional F is convex and admits a unique minimizer in a suitable ad-
missible set of concentrations. This unique minimizer is determined by the vanishing of the
first variation δF [c] = 0, which leads to the Boltzmann distributions for the equilibrium ionic
concentrations and the corresponding electrostatic potential ci = ci(ϕ) in Ω for all i = 1, . . . ,M .
In the case of no ionic size effects, these are the classical Boltzmann distributions, ci = c∞i e

−βqiϕ

in Ω for i = 1, . . . ,M , where c∞i is the bulk concentration of the ith ionic species in the sys-
tem. With the ionic size effect included, explicit formulas of such relations seem to be only
available for the special case of a uniform size, i.e., all the ionic sizes and the solvent molecular
size are the same [10, 11, 14, 16, 17, 23]. With the Boltzmann distributions, the charge density
is ρ = f +

∑M
i=1 qici(ϕ) and the Poisson equation in (1.2) becomes the generalized Poisson–

Boltzmann (PB) equation (PBE)

∇ · ε∇ϕ−B′(ϕ) = −f in Ω, (1.6)
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where the function B : R → R is defined through the Boltzmann distributions ci = ci(ϕ)
(i = 1, . . . ,M) by B′(ϕ) = −

∑M
i=1 qici(ϕ).

In this work, we first examine the functional F [c] defined in (1.1) and the related PBE (1.6)
for the case that the ionic charges are all positive (cations only), or all negative (anions only),
or a mixture of both positive and negative charges. We then study the penalized functionals

Gλ[c, ϕ] =

∫
Ω

[
ε

2
|∇ϕ|2 + S(c)−

M∑
i=1

µici

]
dx

+ λ1

∫
Ω

(
∇ · ε∇ϕ+ f +

M∑
i=1

qici

)2

dx+ λ2

∫
∂Ω

(ϕ− g)2 dS, (1.7)

where λ = (λ1, λ2) with λ1 > 0 and λ2 > 0. Note that the function ϕ in the definition of F [c] is
constrained by Poisson’s equation in (1.2) while ϕ in Gλ[c, ϕ] is a free variable. It follows from
Poisson’s equation in (1.2) and integration by parts that the first term in F [c] is∫

Ω

1

2
ρϕ dx =

∫
Ω

ε

2
|∇ϕ|2 dx−

∫
∂Ω

1

2
ε∂nϕg dS,

where n is the unit exterior normal at ∂Ω. If we neglect the boundary integral term by approx-
imation, we obtain the first term in Gλ[c, ϕ]. The penalty terms (i.e., the λ1 and λ2 terms) in
Gλ[c, ϕ] force ϕ to satisfy Poisson’s equation and the boundary condition (1.2) with the penalty
coefficients λ1, λ2 → +∞. The constraint-free penalized energy functionals Gλ are designed
for numerical studies of the PB electrostatics, particularly applied to charged molecules with
complex surfaces, using a machine learning approach [6, 9].

Our main results are the following:
(1) We consider a family of the PB equations with fixed charge densities fk and boundary

values gk (k = 1, 2, . . . ) and prove that each of the boundary-value problems of the PBE has a
unique weak solution ϕk. Moreover, supk≥1 ∥ϕk∥L∞(Ω) < ∞. The proof relies on a variational
structure of the PB equation and an improved comparison argument [15].

(2) Using the direct method in the calculus of variations, we prove the existence of minimizers
of the PB electrostatic free-energy functions on suitably defined spaces of ionic concentrations
that have minimum regularity requirement; cf. [13, 14]. Moreover, we use the uniformly bounded
electrostatic potentials that are solutions to the PBE and the expected Boltzmann distributions
to construct the unique free-energy minimizing ionic concentrations that are bounded below and
above by positive constants. This is different from previous work that obtains such bounds by
a technical construction of lower energy concentrations [13, 14].

(3) Given any penalty coefficient λ = (λ1, λ2) > 0, we prove the existence and uniqueness
of the minimizer for the penalized functional Gλ defined in (1.7). A key step in the proof is
a “change of variable” argument that allows us to disintegrate the penalty terms from other
terms in the functionals. We also prove the convergence of the penalized energy functionals
to the classical electrostatic energy functionals with respect to the energy minimizers and the
minimum energy values.

The rest of the paper is organized as follows. In section 2, we prove the uniform boundedness
for solutions of the PBE with a sequence of charge densities and boundary values. In section 3, we
prove the existence and uniqueness of the minimizer of the PB energy functionals and also obtain
the positive bounds for such minimizers. In section 4, we prove the existence and uniqueness of
the minimizers for penalized PB energy functionals and the convergence of such functionals.
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2 The PB Equation

In what follows, we assume that B ∈ C∞(R) is a strictly convex function and infs∈RB(s) = 0.
Moreover, it satisfies the following additional properties corresponding to three different cases:
Case 1. There exist i, j ∈ {1, . . . ,M} such that qi > 0 and qj < 0. In this case, B(−∞) = +∞

and B(+∞) = +∞. Moreover, B′(−∞) = −∞ or B′(−∞) exists and is negative, and
B′(+∞) = +∞ or B′(+∞) exists and is positive.

Case 2. All qi > 0 (i = 1, . . . ,M). In this case, B is monotonically decreasing with B(−∞) =
+∞ and B(+∞) = 0. Moreover, B′(−∞) = −∞ or B′(−∞) exists and is negative, and
B′(+∞) = 0.

Case 3. All qi < 0 (i = 1, . . . ,M). In this case, B is monotonically increasing with B(−∞) = 0
and B(+∞) = +∞. Moreover, B′(−∞) = 0, and B′(+∞) = +∞ or B′(+∞) exists and
is positive.

Figure 2.1 shows schematic of the graph of the function B for the three cases. We remark that
these properties of the function B are satisfied in general [2, 5, 13, 14].

Figure 2.1: Schematic of the three cases of the function B.

We assume Ω ⊂ R3 is a bounded domain with a Lipschitz-continuous boundary ∂Ω. Let
ε ∈ L∞(Ω) satisfy (1.3), f ∈ L2(Ω), and g ∈ H1(Ω). Denote

H1
g (Ω) = {ϕ ∈ H1(Ω) : ϕ = g on ∂Ω}.

Here and below, we use the standard notation of Sobolev spaces; cf. e.g., [1, 7, 8].

Definition 2.1. A function ϕ ∈ H1
g (Ω) is a weak solution to the boundary-value problem of

PBE (1.6) with the boundary condition ϕ = g on ∂Ω if B′(ϕ) ∈ L2(Ω) and∫
Ω

[
ε∇ϕ · ∇ξ +B′(ϕ)ξ

]
dx =

∫
Ω

fξ dx ∀ξ ∈ H1
0 (Ω).

Let fk ∈ L2(Ω) and gk ∈ H1(Ω) (k = 1, 2, . . . ). For each k ≥ 1, we define the functional
Jk : H

1
gk
(Ω) → R ∪ {+∞} by

Jk[ϕ] =

∫
Ω

[ε
2
|∇ϕ|2 +B(ϕ)− fkϕ

]
dx ∀ϕ ∈ H1

gk
(Ω). (2.1)

The boundary-value problem for the corresponding Euler–Lagrange equation, which is the PB
equation, is {

∇ · ε∇ϕ−B′(ϕ) = −fk in Ω,

ϕ = gk on ∂Ω.
(2.2)

4



Theorem 2.1. Assume either
(1) Ω ⊂ R3 is a bounded domain with a C1 boundary ∂Ω, ε ∈ L∞(Ω) satisfy (1.3), and

fk ∈ L2(Ω) and gk ∈ W 1,∞(Ω) (k = 1, 2, . . . ) satisfy

sup
k≥1

∥fk∥L2(Ω) <∞ and sup
k≥1

∥gk∥W 1,∞(Ω) <∞, (2.3)

respectively; or
(2) Ω ⊂ R3 is a bounded domain with a C2 boundary ∂Ω, ε ∈ W 1,∞(Ω) satisfy (1.3), and

fk ∈ L2(Ω) and gk ∈ H2(Ω) (k = 1, 2, . . . ) satisfy

sup
k≥1

∥fk∥L2(Ω) <∞ and sup
k≥1

∥gk∥H2(Ω) <∞, (2.4)

respectively. Then, for each k ≥ 1, the functional Jk : H1
gk
(Ω) → R ∪ {+∞} admits a unique

minimizer ϕk ∈ H1
gk
(Ω). Moreover, the following hold true under the assumption (1) or (2),

respectively:
(1) For each k ≥ 1, ϕk ∈ L∞(Ω) and is the unique weak solution to (2.2), and

sup
k≥1

∥ϕk∥L∞(Ω) <∞; (2.5)

(2) For each k ≥ 1, ϕk ∈ H2(Ω) and is the unique weak solution to (2.2), and

sup
k≥1

∥ϕk∥H2(Ω) <∞. (2.6)

Remark. The two different assumptions in the theorem will also be used in several lemmas and
theorems below. The first assumption is less restrictive and serves as a general result while the
second one is made particularly for studying the penalized and constraint-free energy functionals
in sections 4.

Proof of Theorem 2.1. Fix k ≥ 1. Note that B ≥ 0 and Jk is strictly convex. The existence
and uniqueness of its minimizer ϕk over the set H1

gk
(Ω) follows from a standard argument using

the direct method in the calculus of variations; cf. e.g., [7, 13, 14, 15]. Once it is shown that
ϕk ∈ L∞(Ω) in Case (1) or ϕk ∈ H2(Ω) ↪→ L∞(Ω) in Case (2), then by direct calculations
following the definition of the first variation and the Lebesgue Dominated Convergence theorem,
we have ∫

Ω

[ε∇ϕk · ∇ξ +B′(ϕk)ξ − fkξ] dx = 0

first for any ξ ∈ C1
c (Ω) and then for any ξ ∈ H1

0 (Ω) as C
1
c (Ω) is dense in H1

0 (Ω). Therefore, ϕk

is also a weak solution to the corresponding PBE by Definition 2.1. The uniqueness of such a
solution follows from the strict convexity of B. Therefore, we only need to prove (2.5) in Case
(1) and (2.6) in Case (2).

To continue, we first “shift” out fk in Jk and then apply a comparison argument to obtain
the uniform bound (2.5) and (2.6). Fix k ≥ 1. There exists a unique ηk ∈ H1

gk
(Ω), such that∫

Ω

ε∇ηk · ∇ξ dx =

∫
Ω

fkξ dx ∀ξ ∈ H1
0 (Ω). (2.7)
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In Case (1), gk ∈ W 1,∞(Ω). Thus, it follows from (2.3), the solution boundedness (cf. Theo-
rem 8.16 in [8]) and the embedding W 1,∞(Ω) ↪→ L∞(∂Ω) that ηk ∈ L∞(Ω) (k = 1, 2, . . . ), and
there exists a constant C = C(Ω) such that

sup
k≥1

∥ηk∥L∞(Ω) ≤ C sup
k≥1

(
∥fk∥L2(Ω) + ∥gk∥W 1,∞(Ω)

)
<∞. (2.8)

In Case (2), ε ∈ W 1,∞(Ω) and gk ∈ H2(Ω). By (2.4), the regularity theory (cf. Theorem 8.12 in
[8]) and the Sobolev embedding H2(Ω) ↪→ L∞(Ω), we have

sup
k≥1

∥ηk∥H2(Ω) <∞ and sup
k≥1

∥ηk∥L∞(Ω) <∞. (2.9)

For any ϕ ∈ H1
gk
(Ω), let w = ϕ − ηk ∈ H1

0 (Ω). By (2.7) with ξ replaced by w, we have by
direct calculations that

Jk[ϕ] = J (k)[w] +

∫
Ω

(ε
2
|∇ηk|2 − fkηk

)
dx,

where the integral term is a constant for a fixed k and

J (k)[w] =

∫
Ω

[ε
2
|∇w|2 +B(w + ηk)

]
dx ∀w ∈ H1

0 (Ω).

Therefore, the minimization of Jk over ϕ ∈ H1
gk
(Ω) is equivalent to the minimization of J (k) over

w ∈ H1
0 (Ω). By the direct method in the calculus of variations, there exists a unique wk ∈ H1

0 (Ω)
that minimizes J (k) : H1

0 (Ω) → R ∪ {+∞}. Clearly, ϕk = wk + ηk. By (2.8) and (2.9), it now
suffices to prove

For Case (1): sup
k≥1

∥wk∥L∞(Ω) <∞, (2.10)

For Case (2): sup
k≥1

∥wk∥H2(Ω) <∞. (2.11)

We consider three cases.
Case (i). There exist i and j such that qi > 0 and qj < 0. In this case, B′(−∞) = −∞ or it

exists and is negative, and B′(+∞) = +∞ or it exists and is positive. By (2.8) and (2.9), there
exist λ > 0 and a > 0 independent of k, such that

B′(λ+ ηk) ≥ a and B′(−λ+ ηk) ≤ −a a.e. Ω. (2.12)

Now for each k, we define wk,λ : Ω → R by

wk,λ(x) =


− λ if wk(x) < −λ,
wk(x) if − λ ≤ wk(x) ≤ λ,

λ if wk(x) > λ.

We verify that wk,λ ∈ H1
0 (Ω) and |∇wk,λ| ≤ |∇wk| a.e. in Ω. Since J (k)[wk] ≤ J (k)[wk,λ], it

follows that ∫
Ω

B(wk,λ + ηk) dx ≥
∫
Ω

B(wk + ηk) dx.
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Consequently, we have by the convexity of B and (2.12) that

0 ≥
∫
Ω

B(wk + ηk) dx−
∫
Ω

B(wk,λ + ηk) dx

=

∫
{wk<−λ}

[B(wk + ηk)−B(−λ+ ηk)] dx+

∫
{wk>λ}

[B(wk + ηk)−B(λ+ ηk)] dx

≥
∫
{wk<−λ}

B′(−λ+ ηk) (wk + λ) dx+

∫
{wk>λ}

B′(λ+ ηk) (wk − λ) dx

≥
∫
{wk<−λ}

−a(wk + λ) dx+

∫
{wk>λ}

a(wk − λ) dx

=

∫
{wk<−λ}

a (|wk| − λ) dx+

∫
{wk>λ}

a (|wk| − λ) dx

=

∫
{|wk|>λ}

a (|wk| − λ) dx

≥ 0.

Thus, |wk| ≤ λ a.e. Ω. Hence, (2.10) holds true as λ is independent of k. Moreover, wk ∈ H1
0 (Ω)

is a weak solution to ∇ · ε∇wk = B′(wk + ηk) in Ω. The assumptions on ε and Ω in Case (2),
(2.9), and the regularity theory (cf. Theorem 8.12 in [8]) imply that wk ∈ H2(Ω) and (2.11).

Case (ii). All qi > 0 (i = 1, . . . ,M). In this case, B′(−∞) = −∞ or it exists and is negative.
By the same argument, there exists λ > 0 and b > 0, independent of k, such that

B′(−λ+ ηk) ≤ −b a.e. Ω. (2.13)

For each k, we define wk,λ : Ω → R ∪ {+∞} by

wk,λ(x) =

{
− λ if wk(x) < −λ,
wk(x) if wk(x) ≥ −λ.

We have wk,λ ∈ H1
0 (Ω) and |∇wk,λ| ≤ |∇wk| a.e. in Ω. Since J (k)[wk] ≤ J (k)[wk,λ],∫

Ω

B(wk,λ + ηk) dx ≥
∫
Ω

B(wk + ηk) dx.

Thus, we have by the convexity of B and (2.13) that

0 ≥
∫
Ω

B(wk + ηk) dx−
∫
Ω

B(wk,λ + ηk) dx

=

∫
{wk<−λ}

[B(wk + ηk)−B(−λ+ ηk)] dx

≥
∫
{wk<−λ}

B′(−λ+ ηk) (wk + λ) dx

≥
∫
{wk<−λ}

−b(wk + λ) dx

≥ 0.
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Consequently, we have
wk ≥ −λ a.e. Ω ∀k ≥ 1. (2.14)

Since λ is independent of k, this and (2.8) or (2.9), together with the fact that B′(+∞) = 0 in
this case, imply that [B(wk + ηk + tξ)−B(wk + ηk)] /t (0 < |t| < 1) are uniformly essentially
bounded in Ω for any ξ ∈ C1

c (Ω). Therefore, since wk ∈ H1
0 (Ω) minimizes J (k) over H1

0 (Ω), we
have by the routine calculations using the Lebesgue Dominated Convergence theorem that∫

Ω

[ε∇wk · ∇ξ +B′(wk + ηk)ξ] dx = 0 ∀ξ ∈ C1
c (Ω).

This is also true if ξ ∈ H1
0 (Ω), since C

1
c (Ω) is dense in H1

0 (Ω). Thus, wk ∈ H1
0 (Ω) is a weak

solution to ∇·ε∇wk = B′(wk+ηk). For Case (1), since supk≥1 ∥B′(wk+ηk)∥L∞(Ω) <∞ by (2.8)
and (2.14), we obtain (2.10) by the solution boundedness (cf. Theorem 8.16 in [8]). Similarly,
with the assumptions on Ω and ε in Case (2), we have by (2.9) and the regularity theory (cf.
Theorem 8.12 in [8]) that wk ∈ H2(Ω) and (2.11) holds true.

Case (iii). All qi < 0 (i = 1, . . . ,M). This is similar to Case (ii).

3 The PB Free-Energy Functional

In this section, we study the PB functional F [c] defined in (1.1), which is rewritten as

F [c] =

∫
Ω

[
1

2
ρϕ+W (c)

]
dx (3.1)

and the related PB functional

F̂ [c] =

∫
Ω

[ε
2
|∇ϕ|2 +W (c)

]
dx. (3.2)

Here, Ω ⊂ R3 is a bounded domain, c = (c1, . . . , cM),

W (c) = S(c)−
M∑
i=1

µici, (3.3)

and ϕ is the unique weak solution to (1.2) defined by ϕ ∈ H1
g (Ω) and∫

Ω

ε∇ϕ · ∇ξ dx = ⟨ρ, ξ⟩ ∀ξ ∈ H1
0 (Ω), (3.4)

where ρ = f +
∑M

i=1 qici and ⟨ρ, ξ⟩ = ρ(ξ) if ρ ∈ H−1(Ω). If the integral of ρξ over Ω exists, then

⟨ρ, ξ⟩ is the same as that integral. Note that F̂ [c] is the first part of the penalized functional
Gλ[c, ϕ] defined in (1.7).

We first define a suitable set Y+ ⊂ [L1(Ω)]M of admissible concentrations and reformulate
these functionals into new and equivalent ones for all c ∈ Y+ which have the minimal regularity.
Let Ω ⊂ R3 be a bounded domain with a Lipschitz-continuous boundary ∂Ω. We consider
functions ρ ∈ L1(Ω) such that

sup
0 ̸=ξ∈H1

0 (Ω)∩L∞(Ω)

1

∥ξ∥H1(Ω)

∣∣∣∣∫
Ω

ρξ dx

∣∣∣∣ <∞. (3.5)
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We define
X =

{
ρ ∈ L1(Ω) : condition (3.5) holds true

}
. (3.6)

Clearly, X is a vector subspace of L1(Ω). The following elementary lemma indicates that each
ρ ∈ X can be extended uniquely to an element in H−1(Ω) and we omit its proof:

Lemma 3.1. Let ρ ∈ X. There exists a unique Tρ ∈ H−1(Ω) such that

Tρ(ξ) =

∫
Ω

ρξ dx ∀ξ ∈ H1
0 (Ω) ∩ L∞(Ω),

Tρ(ξ) = lim
k→∞

∫
Ω

ρξk dx ∀ξ ∈ H1
0 (Ω),

where ξk ∈ H1
0 (Ω) ∩ L∞(Ω) (k ≥ 1) and ξk → ξ in H1(Ω),

∥Tρ∥H−1(Ω) = sup
0̸=ξ∈H1

0 (Ω)∩L∞(Ω)

1

∥ξ∥H1(Ω)

∣∣∣∣∫
Ω

ρξ dx

∣∣∣∣ .
Moreover, the space X is a Banach space with the norm ∥ρ∥X = ∥ρ∥L1(Ω) + ∥Tρ∥H−1(Ω).

We denote ⟨T, ξ⟩ = T (ξ) for any T ∈ H−1(Ω) and ξ ∈ H1
0 (Ω). If ρ ∈ X, then we shall identify

Tρ = ρ. If ξ ∈ H1
0 (Ω), then ⟨ρ, ξ⟩ = ⟨Tρ, ξ⟩. If ξ ∈ H1

0 (Ω) ∩ L∞(Ω), then ⟨ρ, ξ⟩ is the integral of
ρξ over Ω. We define

Y =

{
c = (c1, . . . , cM) ∈ [L1(Ω)]M : ρ(c) :=

M∑
i=1

qici ∈ X

}
, (3.7)

Y+ =
{
c = (c1, . . . , cM) ∈ Y : ci ∈ [L1

+(Ω)]
M , i = 1, . . . ,M

}
, (3.8)

where Lp
+(Ω) = {u ∈ Lp(Ω) : u ≥ 0 a.e. Ω} for any p: 1 ≤ p ≤ ∞. For any c ∈ Y , define

∥c∥Y =
M∑
i=1

∥ci∥L1(Ω) + ∥ρ(c)∥H−1(Ω).

We can verify that (Y, ∥ · ∥Y ) is a Banach space, Y+ is a convex and closed subset of Y , and
[L2

+(Ω)]
M ⊂ Y+ ⊂ [L1

+(Ω)]
M .

Now let ε ∈ L∞(Ω) satisfy (1.3). Note that if c ∈ Y+ and ϕ ∈ H1
g (Ω) is the weak solution

to ∇ · ε∇ϕ = −(f + ρ(c)) with ρ(c) =
∑M

i=1 qici, then the integral of ρ(c)ϕ is not well defined
in general. Therefore, we reformulate the functional F [c]. We also reformulate the functional
F̂ [c] for a unified treatment. To do so, we first define Lε : H

−1(Ω) → H1
0 (Ω) as follows: for any

h ∈ H−1(Ω), Lεh ∈ H1
0 (Ω) is the unique weak solution to ∇ · ε∇Lεh = −h, defined by∫

Ω

ε∇(Lεh) · ∇ξ dx = ⟨h, ξ⟩ ∀ξ ∈ H1
0 (Ω). (3.9)

It is clear that the operator Lε : H
−1(Ω) → H1

0 (Ω) is linear, continuous, and self-adjoint,

⟨h1, Lεh2⟩ = ⟨h2, Lεh1⟩ =
∫
Ω

ε∇Lεh1 · ∇Lεh2 dx ∀h1, h2 ∈ H−1(Ω). (3.10)
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Moreover, (h1, h2) 7→ ⟨h1, Lεh2⟩ defined by (3.10) is an inner product of H−1(Ω). It induces the
norm ∥h∥ε :=

√
⟨h, Lεh⟩ on H−1(Ω) and the norm is equivalent to the H−1(Ω)-norm.

Let f ∈ L2(Ω) and g ∈ H1(Ω). For any c ∈ Y+, we have ρ = f + ρ(c) ∈ H−1(Ω) ∩ L1(Ω).
Let ϕf ∈ H1

g (Ω) be the unique weak solution to ∇ · ε∇ϕf = −f defined by∫
Ω

ε∇ϕf · ∇ξ dx =

∫
Ω

fξ dx ∀ξ ∈ H1
0 (Ω). (3.11)

If ϕf ∈ H1
g (Ω) ∩ L∞(Ω), then ϕfρ(c) ∈ L1(Ω). In this case we define E : Y+ → R ∪ {+∞} by

E[c] =

∫
Ω

[
ε

2
|∇Lερ(c)|2 +

1

2
fLερ(c) +

1

2
ϕfρ(c) +W (c)

]
dx+

∫
Ω

1

2
fϕf dx. (3.12)

We also define Ê : Y+ → R ∪ {+∞} by

Ê[c] =

∫
Ω

[ε
2
|∇Lερ(c)|2 + fLερ(c) +W (c)

]
dx+

∫
Ω

ε

2
|∇ϕf |2 dx. (3.13)

Lemma 3.2. Assume either
(1) Ω ⊂ R3 is a bounded domain with a C1 boundary ∂Ω, ε ∈ L∞(Ω) satisfy (1.3), f ∈ L2(Ω),

and g ∈ W 1,∞(Ω); or
(2) Ω ⊂ R3 is a bounded domain with a C2 boundary ∂Ω, ε ∈ W 1,∞(Ω) satisfy (1.3), f ∈

L2(Ω), and g ∈ H2(Ω).
Then E[c] = F [c] for any c ∈ [L2

+(Ω)]
M and Ê[c] = F̂ [c] for any c ∈ Y+.

Proof. We first note that ϕf ∈ L∞(Ω) by the global boundedness of solution (cf. Theorem 8.16
in [8]) with the assumption (1) or by the regularity of solution (cf. Theorem 8.12 in [8]) and
the Sobolev embedding H2(Ω) ↪→ L∞(Ω) (cf. [1, 8]) with the assumption (2). Thus, E[c] is well
defined for any c ∈ Y+. We also note the following: for any c ∈ Y+, by setting h = ρ(c) and
ξ = Lερ(c) in (3.9), we obtain

∥ρ(c)∥2ε = ⟨ρ(c), Lερ(c)⟩ =
∫
Ω

ε|∇Lερ(c)|2 dx. (3.14)

Let c ∈ [L2
+(Ω)]

M , then c ∈ Y+. We show that E[c] = F [c] with the assumption (1) or (2).
Note that ρ = f + ρ(c) ∈ L2(Ω). Let ϕ ∈ H1

g (Ω) be given by (3.4). With ϕf given by (3.11), we
have ϕ = ϕf + Lερ(c) ∈ H1

g (Ω). It thus follows from (3.14) that∫
Ω

1

2
ρϕ dx =

∫
Ω

1

2
(f + ρ(c))(ϕf + Lερ(c)) dx

=

∫
Ω

[
1

2
ρ(c)Lερ(c) +

1

2
fLερ(c) +

1

2
ϕfρ(c) +

1

2
fϕf

]
dx

=

∫
Ω

[
ε

2
|∇Lερ(c)|2 +

1

2
fLερ(c) +

1

2
ϕfρ(c)

]
dx+

∫
Ω

1

2
fϕf dx.

Comparing this with the definition of F [c] (cf. (3.1)) and E[c] (cf. (3.12)), we see that they are
the same.
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Now, let c ∈ Y+. We still have ϕ = ϕf +Lερ(c). Hence, by (3.11) with ξ = Lερ(c), we obtain∫
Ω

ε

2
|∇ϕ|2 dx =

∫
Ω

[ε
2
|∇(ϕ− ϕf )|2 + ε∇(ϕ− ϕf ) · ∇ϕf +

ε

2
|∇ϕf |2

]
dx

=

∫
Ω

[ε
2
|∇Lερ(c)|2 + ε∇Lερ(c) · ∇ϕf +

ε

2
|∇ϕf |2

]
dx

=

∫
Ω

[ε
2
|∇Lερ(c)|2 + fLερ(c) +

ε

2
|∇ϕf |2

]
dx.

Consequently, it follows from the definition of F̂ [c] (cf. (3.2)) and Ê[c] (cf. (3.13)) that they are
the same.

We now calculate the first variation of E and Ê at a set of concentrations c = (c1, . . . , cM) ∈
[L∞

+ (Ω)]M such that each component of c is bounded below by a positive constant and derive
the corresponding (generalized) Boltzmann distributions and the PB equation [5, 13, 14, 17].
Our approach is then to use the boundedness of solution to the PB equation established in
Theorem 2.1 and the derived Boltzmann distributions to construct the ionic concentrations and
show that they minimize the free-energy functional.

First, let
ug = ϕf − Lεf ∈ H1

g (Ω). (3.15)

Note that ug ∈ H1
g (Ω) is the unique weak solution to ∇ · ε∇ug = 0 defined by∫

Ω

ε∇ug · ∇ξ dx = 0 ∀ξ ∈ H1
0 (Ω). (3.16)

Now let c = (c1, . . . , cM) ∈ Y+ and d = (d1, . . . , dM) ∈ [C1
c (Ω)]

M . By the definition of Lε (cf.
(3.9)), ϕ (cf. (3.4)), ϕf (cf. (3.11)), and ug (cf. (3.15)), we obtain Lερ(c) + Lεf = ϕ − ug and
ϕf = ug + Lεf. Therefore, we have

δE[c][d] =
d

dt

∣∣∣∣
t=0

E[c+ td]

=

∫
Ω

[
ε∇Lερ(c) · ∇Lερ(d) +

1

2
fLερ(d) +

1

2
ϕfρ(d) +∇W (c) · d

]
dx

=

∫
Ω

[
(Lερ(c))ρ(d) +

1

2
(Lεf + ϕf )ρ(d) +∇W (c) · d

]
dx

=

∫
Ω

[(
Lερ(c) +

1

2
(Lεf + ϕf )

)
ρ(d) +∇W (c) · d

]
dx

=
M∑
i=1

∫
Ω

[
∂ciW (c) + qi

(
ϕ− ug

2

)]
di dx.

Since W (c) is given in (3.3), we thus obtain

δciE[c] = ∂ciS(c)− µi + qi

(
ϕ− ug

2

)
, i = 1, . . . ,M. (3.17)

Setting δE[c] = 0, we obtain the equilibrium concentration c. Similarly, we have for Ê that

δciÊ[c] = ∂ciS(c)− µi + qi (ϕ− ug) , i = 1, . . . ,M. (3.18)
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In this case, the equilibrium concentration c is determined by δÊ[c] = 0.
The following proposition indicates that the equilibrium conditions (3.17) or (3.18) determine

a one-to-one correspondence between the equilibrium concentrations c = (c1, . . . , cM) and the
equilibrium electrostatic potential ϕ:

Proposition 3.1. (1) The system of equations

∂ciS(B1(ϕ), . . . , BM(ϕ))− µi + qiϕ = 0, i = 1, . . . ,M, (3.19)

define the bijection Bi : R → (0,∞) (i = 1, . . . ,M) with each Bi ∈ C∞(R) and B−1
i ∈

C∞((0,∞)). Moreover, Bi(A) ⊂ (0,∞) is compact in (0,∞) if A ⊂ R is compact in R.
(2) The function B : R → R defined by

B(ϕ) = −
M∑
i=1

qi

∫ ϕ

0

Bi(ξ) dξ +B0, (3.20)

with B0 a constant such that infs∈RB(s) = 0, satisfies all the properties assumed in sec-
tion 2.

We shall call ci = Bi(ϕ) in Ω (i = 1, . . . ,M) the (generalized) Boltzmann distributions
of ionic concentrations c = (c1, . . . , cM) with respect to the electrostatic potential ϕ = ϕ(x)
(x ∈ Ω).

Proof of Proposition 3.1. We consider two different cases, without and with size effects, defined
in (1.4). For the case of no size effect, we have for each i (1 ≤ i ≤ M) that ∂ciS(c) =
β−1 log(Λ3ci). Hence, Eq. (3.19) defines Bi(ϕ) = c∞i e

−βqiϕ with c∞i = Λ−3eβµi . Since qi ̸= 0, Bi

is a bijection from R to (0,∞). It is clear that both Bi and B−1
i are C∞-functions and that

Bi maps a compact subset of R to a compact subset of (0,∞). In this case, we have by (3.20)
that B(ϕ) = β−1

∑M
i=1 c

∞
i e

−βqiϕ + b0, where b0 is a constant so that infs∈RB(s) = 0. Direct
calculations verify that the function B ∈ C∞(R) satisfies all the properties for B in section 2.
For the case of size effect included, these results are proved in [13, 14, 16].

We note that, if the size is uniform with the volume being v for an ion of any species and
for a solvent molecule, then [3, 13, 14]

Bi(ϕ) =
c∞i e

−βqiϕ

1 + v
∑M

j=1 c
∞
j (e−βqjϕ − 1)

with c∞i =
v−1eβµi

1 +
∑M

j=1 e
βµj

, i = 1, . . . ,M.

However, such an analytical formula seems not available for ions with non-uniform sizes.
Note that for each set of concentrations c = (c1, . . . , cM), the corresponding electrostatic

potential ϕ ∈ H1
g (Ω) is the unique weak solution to the Poisson equation corresponding to the

charge density ρ = f + ρ(c); cf. (3.4). If c is an equilibrium, i.e., δE[c] = 0 or δÊ[c] = 0, then it
follows from (3.17), (3.18), and Proposition 3.1 that

For E[c] : ρ(c) =
M∑
i=1

qici = −B′
(
ϕ− ug

2

)
, (3.21)

For Ê[c] : ρ(c) =
M∑
i=1

qici = −B′(ϕ− ug). (3.22)
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The Poisson equation (cf. (3.4)) then becomes the (generalized) PB equation for the equilibrium
electrostatic potential ϕ, given by

For E[c] : ∇ · ε∇ϕ−B′
(
ϕ− ug

2

)
= −f in Ω, (3.23)

For Ê[c] : ∇ · ε∇ϕ−B′(ϕ− ug) = −f in Ω. (3.24)

We conclude from our calculations that if c minimizes E or Ê, and if each component of c
is bounded below and above by positive constants, then the corresponding ϕ ∈ H1

g (Ω) defined
by (3.4) solves the PBE (3.23) or (3.24). Conversely, if ϕ solves the PBE (3.23) or (3.24), then
we can construct the concentration c = (c1, . . . , cM) by ci = Bi(ϕ − ug/2) or ci = Bi(ϕ − ug)

(i = 1, . . . ,M) to minimize E or Ê.
The following is our main result in this section:

Theorem 3.1. Assume either (1) or (2) as in Lemma 3.2. Then there exist a unique minimizer
d = (d1, . . . , dM) of E : Y+ → R∪ {+∞} and a unique minimizer d̂ = (d̂1, . . . , d̂M) of Ê : Y+ →
R ∪ {+∞}, given respectively by

di = Bi

(
ψ − ug

2

)
and d̂i = Bi

(
ψ̂ − ug

)
in Ω, i = 1, . . . ,M, (3.25)

where ψ, ψ̂ ∈ H1
g (Ω) ∩ L∞(Ω) with the assumption (1) and ψ, ψ̂ ∈ H1

g (Ω) ∩ H2(Ω) with the
assumption (2) are the unique weak solution to the PB equation (3.23) and (3.24), respectively.
In particular, d, d̂ ∈ [L∞

+ (Ω) ∩ H1(Ω)]M and there exist positive constants θi and θ̂i (i = 1, 2)
such that

θ1 ≤ di ≤ θ2 and θ̂1 ≤ d̂i ≤ θ̂2 a.e. Ω, i = 1, . . . ,M. (3.26)

Proof. We only consider the functional E as the proof for the functional Ê is similar.
Step 1. We first establish the existence and uniqueness of the minimizer of E. Since Lε :

H−1(Ω) → H1
0 (Ω) is self-adjoint, and Lεf ∈ L∞(Ω) following the assumption (1) or (2), we have∫

Ω

fLερ(c) dx =

∫
Ω

(Lεf)ρ(c) dx ∀c ∈ Y+.

Denoting η = (Lεf + ϕf )/2 ∈ L∞(Ω) and V (c) = ηρ(c) +W (c) for any c ∈ Y+, we can rewrite
the energy E[c] (cf. (3.12)) as

E[c] =

∫
Ω

[ε
2
|∇Lερ(c)|2 + V (c)

]
dx+

∫
Ω

1

2
fϕf dx ∀c ∈ Y+.

By (1.4) and (3.3), we have

V (c) =


β−1

M∑
i=1

ci [log ci + σi] without size effect,

β−1

M∑
i=1

ci [log ci + τi] + β−1c0 [log(v0c0)− 1] with size effect,

(3.27)
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where σi and τi are some functions in L∞(Ω) that are independent of c ∈ Y+ and c0 is a function
of (c1, . . . , cM) as defined in (1.5). Note that V is bounded below and it is also convex [13, 14].
Therefore, by setting h1 = h2 = ρ(c) in (3.10) and by the remark below (3.10), we have

E[c] ≥ C1∥ρ(c)∥2H−1(Ω) +

∫
Ω

V (c) dx+ C2 ∀c ∈ Y+,

where C1 > 0 and C2 are two constants.
Let γ = infc∈Y+ E[c]. Since V (c) is bounded below for any c ∈ Y+, γ is finite. Let c(k) =

(c
(k)
1 , . . . , c

(k)
M ) ∈ Y+ (k = 1, 2, . . . ) be such that E[c(k)] → γ. We have

sup
k≥1

∥ρ(c(k))∥H−1(Ω) <∞ and sup
k≥1

∫
Ω

V (c(k)) dx <∞. (3.28)

We claim that, up to a subsequence that is not relabeled, c(k) ⇀ d in [L1(Ω)]M for some
d = (d1, . . . , dM) ∈ [L1

+(Ω)]
M . In the case of no size effect included, this follows from that fact

that V (c) is superlinear (cf. (3.27)), the second inequality in (3.28), and de la Vallée Poussin’s
criterion [18] (cf. the proof of Lemma 3.3 in [14]). In the case with the size effect included, this
follows from the fact that all the concentrations are bounded (cf. (1.5)) and hence, there exists a
subsequence of {c(k)} that converges weakly in [L2(Ω)]M and hence weakly in [L1(Ω)]M to some
d = (d1, . . . , dM) ∈ [L2

+(Ω)]
M ⊂ Y+. Since c(k) ⇀ d in [L1(Ω)]M , we have by the convexity of

V (c) for both of the cases that [13, 14]

lim inf
k→∞

∫
Ω

V (c(k)) dx ≥
∫
Ω

V (d) dx. (3.29)

By the first inequality in (3.28), there exists a subsequence of {c(k)}, not relabeled, such that
ρ(c(k)) ⇀ h in H−1(Ω) for some h ∈ H−1(Ω). Since c(k) ⇀ d in [L1(Ω)]M , by the definition of
ρ(c) for any c ∈ Y+ (cf. (3.7) and (3.8)), ρ(c(k))⇀ ρ(d) in L1(Ω). Thus,

h(ξ) = lim
k→∞

∫
Ω

ρ(c(k))ξ dx =

∫
Ω

ρ(d)ξ dx ∀ξ ∈ H1
0 (Ω) ∩ L∞(Ω).

Consequently, ρ(d) = h ∈ X and hence d ∈ Y+. Since ρ(c(k)) ⇀ ρ(d) in H−1(Ω), we have
limk→∞⟨ρ(c(k))− ρ(d), Lερ(d)⟩ = 0. Splitting the terms, we have by (3.10) that

lim inf
k→∞

∫
Ω

ε

2
|∇Lερ(c

(k))|2 dx

≥ lim inf
k→∞

∫
Ω

[ε
2
|∇Lερ(c

(k))−∇Lερ(d)|2 +
ε

2
|∇Lερ(d)|2

]
dx

+ lim inf
k→∞

∫
Ω

ε
(
∇Lερ(c

(k))−∇Lερ(d)
)
· ∇Lερ(d) dx

≥
∫
Ω

ε

2
|∇Lερ(d)|2 dx+ lim inf

k→∞
⟨ρ(c(k))− ρ(d), Lερ(d)⟩

=

∫
Ω

ε

2
|∇Lερ(d)|2 dx.

This and (3.29) imply γ = lim infk→∞E[c(k)] ≥ E[d] ≥ γ. Hence d ∈ Y+ is a minimizer of
E : Y+ → R ∪ {+∞}.
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Assume d̃ ∈ Y+ is also a minimizer of E over Y+. Clearly, (d̃+d)/2 ∈ Y+. Since E is convex,
we have (d̃+ d)/2 is also a minimizer of E over Y+. Therefore, by direct calculations, we have

0 = E

[
d̃+ d

2

]
− 1

2
E[d̃]− 1

2
E[d]

= −
∫
Ω

ε

8
|∇Lερ(d̃)−∇Lερ(d)|2 dx+

∫
Ω

[
V

(
d̃+ d

2

)
− 1

2
V (d̃)− 1

2
V (d)

]
dx

≤
∫
Ω

[
V

(
d̃+ d

2

)
− 1

2
V (d̃)− 1

2
V (d)

]
dx.

Since V is convex on [0,∞), the integrand of the last integral is non positive and therefore
vanishes a.e. in Ω. Moreover, since c0 log(v0c0) is convex in (c1, . . . , cM) [13] for the case of size
effect included, we have by the definition of V (cf. (3.27)) that

Vi

(
d̃+ d

2

)
=

1

2
Vi(d̃) +

1

2
Vi(d) in Ωi, i = 1, . . . ,M, (3.30)

where Ωi ⊆ Ω with the measure |Ω \Ωi| = 0 and Vi(c) = β−1
∑M

i=1 ci(log ci + γi) with γi = σi or
τi (i = 1, . . . ,M). Note that each Vi is convex at every point in Ωi. Fix i. We verify from (3.30)
that d̃i(x) = 0 if and only if di(x) = 0 for any x ∈ Ωi. If both d̃i(x) and di(x) are nonzero for
some x ∈ Ωi, then by (3.30) and the strict convexity of Vi on (0,∞), we infer that d̃i(x) = di(x).
Therefore, d̃ = d a.e. Ω and the minimizer is unique.

Step 2. We establish the bounds for d and show that d ∈ [H1(Ω)]M . To do so, we construct
the set of concentrations using Boltzmann distributions and verify that it is indeed the minimizer
d and it satisfies the desired properties.

By Theorem 2.1 with fk = f and gk = g/2 for every k, there exists a unique ψf ∈ H1
g/2(Ω)

that minimizes J : H1
g/2(Ω) → R ∪ {+∞} defined by

J [ψ] =

∫
Ω

[ε
2
|∇ψ|2 − fψ +B(ψ)

]
dx, ∀ψ ∈ H1

g/2(Ω),

where B is defined in (3.20) in Proposition 3.1. Moreover, ψf ∈ H1
g/2(Ω) ∩ L∞(Ω) with the

assumption (1) and ψf ∈ H1
g/2(Ω) ∩H2(Ω) ⊂ H1

g/2(Ω) ∩ L∞(Ω) with the assumption (2) is the
unique weak solution to the corresponding PB equation defined by∫

Ω

[ε∇ψf · ∇ξ +B′(ψf )ξ] dx =

∫
Ω

fξ dx ∀ξ ∈ H1
0 (Ω). (3.31)

Recall that ug ∈ H1
g (Ω) is defined in (3.16). We have ug ∈ H1

g (Ω)∩L∞(Ω) under the assumption
(1) and ug ∈ H1

g (Ω) ∩H2(Ω) ⊂ H1
g (Ω) ∩ L∞(Ω) under the assumption (2). Define

ψ = ψf +
ug
2

∈ H1
g (Ω) ∩ L∞(Ω). (3.32)

Note that ψ ∈ H1
g (Ω) ∩H2(Ω) with the assumption (2). By (3.15), (3.16), and (3.31), we infer

that ψ is the weak solution to the PB equation (3.23), i.e.,∫
Ω

[
ε∇ψ · ∇ξ +B′

(
ψ − ug

2

)
ξ
]
dx =

∫
Ω

fξ dx ∀ξ ∈ H1
0 (Ω). (3.33)
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Now, let us define b = (b1, . . . , bM) : Ω → RM by

bi = Bi

(
ψ − ug

2

)
, i = 1, . . . ,M, (3.34)

where each Bi is defined in Proposition 3.1. By the definition of B (cf. (3.20)),

ρ(b) =
M∑
i=1

qibi = −B′
(
ψ − ug

2

)
.

By the definition of Lε : H−1(Ω) → H1
0 (Ω) (cf. (3.9)) and the fact that ψ ∈ H1

g (Ω) ∩ L∞(Ω)
(defined in (3.32)) is the weak solution to the PBE (cf. (3.33)), we have

ψ = ug + Lεf + Lερ(b). (3.35)

Clearly, b ∈ [H1(Ω)]M as ψ − ug/2 ∈ H1(Ω) ∩ L∞(Ω) and Bi ∈ C∞(R) by Proposition 3.1.
Moreover, since ψ − ug/2 ∈ L∞(Ω), it follows from (3.34) and Proposition 3.1 that there exist
positive constants θ1 > 0 and θ2 > 0 such that θ1 ≤ bi ≤ θ2 a.e. Ω (i = 1, . . . ,M).

It remains to show that the constructed concentrations b = (b1, . . . , bM) (cf. (3.34)) is in fact
a minimizer of E : Y+ → R ∪ {+∞}. Once this is shown, then by Step 1 of the proof, b = d,
which is the unique minimizer of E over Y+, and by the bounds on b, d satisfies the desired
inequality.

For any c ∈ Y+, we have

E[c]− E[b] =

∫
Ω

ε

2
∇ (Lερ(c)− Lρ(b)) · ∇ (Lερ(c) + Lερ(b)) dx

+

∫
Ω

(
1

2
fLερ(c)−

1

2
fLερ(b)

)
dx+

∫
Ω

(
1

2
ρ(c)ϕf −

1

2
ρ(b)ϕf

)
dx

+

∫
Ω

(W (c)−W (b)) dx

:= A1 + A2 + A3.

By the definition of the operator Lε (3.9), we obtain∫
Ω

ε∇Lερ(c) · ∇ (Lερ(c) + Lερ(b)) dx = ⟨ρ(c), Lερ(c) + Lερ(b)⟩,∫
Ω

ε∇Lερ(b) · ∇ (Lερ(c) + Lερ(b)) dx = ⟨ρ(b), Lερ(c) + Lερ(b)⟩,

leading to

A1 =

∫
Ω

ε

2
∇ (Lερ(c)− Lερ(b)) · ∇ (Lερ(c) + Lερ(b)) dx =

1

2
⟨ρ(c)− ρ(b), Lερ(c) + Lερ(b)⟩.

Since Lε : H
−1(Ω) → H1

0 (Ω) is self-adjoint, we have

A2 =

∫
Ω

(
1

2
fLερ(c)−

1

2
fLερ(b)

)
dx+

∫
Ω

(
1

2
ρ(c)ϕf −

1

2
ρ(b)ϕf

)
dx
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=
1

2
⟨ρ(c)− ρ(b), Lεf⟩+

1

2

∫
Ω

[ρ(c)− ρ(b)]ϕf dx.

Note that W (c) and S(c) are related by (3.3). By our definition of bi (cf. (3.34)) and Propo-
sition 3.1, we have ∂ciW (b) = ∂ciS(b) − µi = −qi (ψ − ug/2) (i = 1, . . . ,M). Therefore, by the
convexity of W , the bounds θ1 ≤ bi ≤ θ2 a.e. Ω (i = 1, . . . ,M), and the fact that ug ∈ L∞(Ω)
(cf. (3.15)) and ψ ∈ L∞(Ω) (cf. (3.32)), we have

A3 =

∫
Ω

[W (c)−W (b)] dx ≥
∫
Ω

[
M∑
i=1

∂ciW (b)(ci − bi)

]
dx =

1

2

∫
Ω

[ρ(c)− ρ(b)] (ug − 2ψ) dx.

By (3.15) and (3.35), ϕf + ug − 2ψ = −Lεf − 2Lερ(b) ∈ H1
0 (Ω). Consequently, it follows the

estimates of A1, A2, and A3 and the definition of Lε (cf. (3.9)) that

E[c]− E[b] ≥ 1

2
⟨ρ(c)− ρ(b), Lερ(c) + Lερ(b)⟩+

1

2
⟨ρ(c)− ρ(b), Lεf⟩

− 1

2

∫
Ω

[ρ(c)− ρ(b)] [Lεf + 2Lερ(b)] dx

=
1

2
⟨ρ(c)− ρ(b), Lερ(c)− Lερ(b)⟩

=

∫
Ω

ε

2
|∇ [Lερ(c)− Lερ(b)] |2 dx

≥ 0.

Hence b is a minimizer of E over Y+.

Let fk ∈ L2(Ω) and gk ∈ H1(Ω) (k = 1, 2, . . . ). For each k ≥ 1, we define F̂k : [L2
+(Ω)]

M →
R ∪ {+∞} by (cf. (3.2))

F̂k[c] =

∫
Ω

[ε
2
|∇ϕk|2 +W (c)

]
dx,

where ϕk = ϕk(c) ∈ H1
gk
(Ω) is determined by∫

Ω

ε∇ϕk · ∇ξ dx =

∫
Ω

(
fk +

M∑
i=1

qici

)
ξ dx ∀ξ ∈ H1

0 (Ω). (3.36)

The following corollary generalizes the above theorem and will be used in the next section:

Corollary 3.1. Let Ω ⊂ R3 be a bounded domain with a C2 boundary ∂Ω, ε ∈ W 1,∞(Ω) satisfy
(1.3), and fk ∈ L2(Ω) and gk ∈ H1(Ω) (k = 1, 2, . . . ). Assume supk≥1 ∥fk∥L2(Ω) < ∞. For each

k ≥ 1, let ψ̂(k) ∈ H1
0 (Ω) be the unique weak solution to the PB equation

∇ · ε∇ψ̂(k) −B′(ψ̂(k)) = −fk in Ω. (3.37)

Then, each ψ̂(k) ∈ H2(Ω) and supk≥1 ∥ψ̂(k)∥H2(Ω) < ∞. Moreover, if d̂k = (d̂k,1, . . . , d̂k,M) :

Ω → RM is defined by d̂k,i = Bi(ψ̂
(k)) (i = 1, . . . ,M), then each d̂k ∈ [L2

+(Ω)]
M is the

unique minimizer of F̂k : [L2
+(Ω)]

M → R ∪ {+∞}, d̂k ∈ [L∞
+ (Ω) ∩ H1(Ω)]M (k = 1, 2, . . . ),

supk≥1 ∥d̂k,i∥H1(Ω) <∞ (i = 1, . . . ,M), and there are positive constants θ̂1 and θ̂2 such that

0 < θ̂1 ≤ d̂k,i ≤ θ̂2 a.e. Ω, ∀i = 1, . . . ,M, ∀k ≥ 1. (3.38)
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Proof. For each k ≥ 1, let ηk ∈ H1
gk
(Ω) be defined uniquely by∫

Ω

ε∇ηk · ∇ξ dx = 0 ∀ξ ∈ H1
0 (Ω). (3.39)

Let c ∈ [L2
+(Ω)]

M and ϕk = ϕk(c) ∈ H1
gk
(Ω) be given in (3.36). Let ψk(c) = ϕk(c)− ηk ∈ H1

0 (Ω).
Then we have ∫

Ω

ε∇ψk(c) · ∇ξ dx =

∫
Ω

(
fk +

M∑
i=1

qici

)
ξ dx ∀ξ ∈ H1

0 (Ω).

Regularity theory (cf. Theorem 8.12 in [8]) implies that ψk(c) ∈ H2(Ω). Direct calculations
using (3.39) with ψk(c) replacing ξ lead to

F̂k[c] = F̂ (k)[c] +

∫
Ω

ε

2
|∇ηk|2 dx,

where

F̂ (k)[c] =

∫
Ω

[ε
2
|∇ψk(c)|2 +W (c)

]
dx ∀c ∈ [L2

+(Ω)]
M .

Thus, for each k ≥ 1, the minimization of F̂k over [L2
+(Ω)]

M is equivalent to the minimization

of F̂ (k) over [L2
+(Ω)]

M .

By Theorem 3.1, with F̂ , f , and g there replaced by F̂ (k), fk, and 0, respectively, for
each k ≥ 1, there exists a unique minimizer d̂k = (d̂k,1, . . . , d̂k,M) of F̂ (k) over [L2

+(Ω)]
M and

d̂k ∈ [L∞
+ (Ω)∩H1(Ω)]M . Moreover, by (3.25) and the fact that ug = 0 (cf. (3.16)) since g = 0, we

have d̂k,i = Bi(ψ̂
(k)) (i = 1, . . . ,M), where ψ̂(k) ∈ H1

0 (Ω) is the unique weak solution to the PB

equation (3.37). By Case (2) of Theorem 2.1, supk≥1 ∥ψ̂(k)∥H2(Ω) <∞, and hence by embedding

supk≥1 ∥ψ̂(k)∥L∞(Ω) < ∞. Therefore, since d̂k,i = Bi(ψ̂
(k)) (i = 1, . . . ,M), (3.38) holds true, and

further, since each Bi is smooth, supk≥1 ∥d̂k,i∥H1(Ω) <∞ (i = 1, . . . ,M).

4 Penalized PB Free-Energy Functionals

We now consider the penalized functionals Gλ[c, ϕ] defined in (1.7). Using the function W
defined in (3.3) and the notation ρ(c) =

∑M
i=1 qici for c = (c1, . . . , cM), we rewrite the functional

Gλ as

Gλ[c, ϕ] =

∫
Ω

[ε
2
|∇ϕ|2 +W (c)

]
dx

+ λ1

∫
Ω

(∇ · ε∇ϕ+ f + ρ(c))2 dx+ λ2

∫
∂Ω

(ϕ− g)2 dS. (4.1)

We define H = H(Ω) by H = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} , where ∆u is defined in the weak
sense, i.e., ∆u ∈ L2(Ω) is determined by∫

Ω

∆u ξ dx =

∫
Ω

u∆ξ dx ∀ξ ∈ C∞
c (Ω).
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If u ∈ H1(Ω) then we have equivalently∫
Ω

∆u ξ dx = −
∫
Ω

∇u · ∇ξ dx ∀ξ ∈ H1
0 (Ω). (4.2)

We define for any u, v ∈ H

⟨u, v⟩H =

∫
Ω

(uv +∇u · ∇v +∆u∆v) dx and ∥u∥H =
√

⟨u, u⟩H . (4.3)

We can verify directly that ⟨·, ·⟩H and ∥ · ∥H are an inner product and the corresponding norm
on H, respectively, and H is a Hilbert space.

Let ε ∈ W 1,∞(Ω) satisfy (1.3) and u ∈ L2(Ω). If there exists w ∈ L2(Ω) such that∫
Ω

w ξ dx =

∫
Ω

u(∇ · ε∇ξ) dx ∀ξ ∈ C∞
c (Ω),

then we say ∇ · ε∇u exists in the weak sense and ∇ · ε∇u = w. If u ∈ H1(Ω) then equivalently∫
Ω

(∇ · ε∇u)ξ dx = −
∫
Ω

ε∇u · ∇ξ dx ∀ξ ∈ H1
0 (Ω). (4.4)

Assume u ∈ H1(Ω) and ∆u ∈ L2(Ω) exists. Setting ξ = εη in (4.2) for any η ∈ H1
0 (Ω),

we see from (4.4) that ∇ · ε∇u = ∇u · ∇ε + ε∆u ∈ L2(Ω). Similarly, assume u ∈ H1(Ω)
and ∇ · ε∇u ∈ L2(Ω). Setting ξ = η/ε in (4.4) for any η ∈ H1

0 (Ω), we see from (4.2) that
∆u = (∇ · ε∇u−∇u · ∇ε)/ε ∈ L2(Ω). Therefore, if u ∈ H1(Ω) then ∆u ∈ L2(Ω) (which implies
that u ∈ H) if and only if ∇ · ε∇u ∈ L2(Ω). In this case, ∇ · ε∇u = ∇ε · ∇u+ ε∆u a.e. in Ω.

Theorem 4.1. Let Ω ⊂ R3 be a bounded domain with a C2 boundary ∂Ω, ε ∈ W 1,∞(Ω) satisfy

(1.3), f ∈ L2(Ω), and g ∈ H2(Ω). Let λ
(0)
1 > 0 and λ

(0)
2 > 0. For any λ1 ≥ λ

(0)
1 and λ2 ≥ λ

(0)
2 ,

there exists a unique (cλ, ϕλ) ∈ [L2
+(Ω)]

M ×H such that

Gλ[cλ, ϕλ] = min
(c,ϕ)∈[L2

+(Ω)]M×H
Gλ[c, ϕ]. (4.5)

Moreover, there exist constants θ1 > 0 and θ2 > 0, independent of λ1 and λ2, such that

0 < θ1 ≤ cλ,i ≤ θ2 a.e. in Ω, i = 1, . . . ,M.

Proof. Fix λ = (λ1, λ2) with λ1 ≥ λ
(0)
1 and λ2 ≥ λ

(0)
2 . We divide our proof into five steps.

Step 1. We first reformulate the energy functional using a new pair of variables. For any
c ∈ [L2

+(Ω)]
M , we define ψ = ψ(c) ∈ H1

g (Ω) by∫
Ω

ε∇ψ(c) · ∇ξ dx =

∫
Ω

(
f +

M∑
i=1

qici

)
ξ dx ∀ξ ∈ H1

0 (Ω). (4.6)

Regularity theory (cf. Theorem 8.12 in [8]) implies that ψ(c) ∈ H2(Ω). We define G̃λ :
[L2

+(Ω)]
M ×H → R ∪ {+∞} by

G̃λ[c, u] =

∫
Ω

[ε
2
|∇ψ(c)−∇u|2 +W (c)

]
dx+ λ1

∫
Ω

(∇ · ε∇u)2 dx+ λ2

∫
∂Ω

u2 dS (4.7)
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and verify that

Gλ[c, ϕ] = G̃λ[c, u] with u = ψ(c)− ϕ ∈ H ∀(c, ϕ) ∈ [L2
+(Ω)]

M ×H. (4.8)

Note that (c, ϕ) minimizes Gλ over [L2
+(Ω)]

M ×H if and only if (c, u) = (c, ψ(c)− ϕ) minimizes

G̃λ over [L2
+(Ω)]

M × H. Hence, it suffices to show the existence of a unique minimizer of G̃λ

over [L2
+(Ω)]

M ×H.
Step 2. We employ the direct method in the calculus of variations and specify an energy-

minimizing sequence. Denote

αλ = inf
(c,u)∈[L2

+(Ω)]M×H
G̃λ[c, u] = inf

(c,ϕ)∈[L2
+(Ω)]M×H

Gλ[c, ϕ]. (4.9)

Choose c(0) = 0 ∈ [L2
+(Ω)]

M and let ϕ(0) ∈ H1
g (Ω) ∩H2(Ω) be such that ∇ · ε∇ϕ(0) = −f in Ω.

Then A := Gλ[c
(0), ϕ(0)] is independent of λ. Since Ω is bounded and W is bounded below, we

have −∞ < αλ ≤ A. Therefore, there exist (cλk , u
λ
k) ∈ [L2

+(Ω)]
M ×H (k = 1, 2, . . . ) such that

αλ ≤ G̃λ[c
λ
k , u

λ
k ] < αλ +

1

k
≤ A+ 1 ∀k ≥ 1. (4.10)

These inequalities and (4.7) imply that

sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥∇ · ε∇uλk∥L2(Ω) <∞ and sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥uλk∥L2(∂Ω) <∞. (4.11)

Step 3. Fix k ≥ 1 and hence uλk . We minimize G̃λ[·, uλk ] over [L2
+(Ω)]

M . By the definition of

G̃λ (cf. (4.7)) and ψ(c) (cf. (4.6)), this is equivalent to minimizing F̂ λ
k [c] over [L

2
+(Ω)]

M , defined
by

F̂ λ
k [c] =

∫
Ω

[ε
2
|∇ϕλ

k(c)|2 +W (c)
]
dx ∀c ∈ [L2

+(Ω)]
M , (4.12)

where ϕλ
k(c) = ψ(c)− uλk ∈ H. The function ϕλ

k(c) is determined by ϕλ
k(c) ∈ H1

g−uλ
k
(Ω) and

∫
Ω

ε∇ϕλ
k(c) · ∇ξ dx =

∫
Ω

(
f +∇ · ε∇uλk +

M∑
i=1

qici

)
ξ dx ∀ξ ∈ H1

0 (Ω). (4.13)

Note by (4.11) that sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥f +∇ · ε∇uλk∥L2(Ω) < ∞. Thus by Corollary 3.1, for

each k ≥ 1, there exists a unique dλk = (dλk,1, . . . , d
λ
k,M) ∈ [L∞

+ (Ω) ∩H1(Ω)]M such that

F̂ λ
k [d

λ
k ] = min

c∈[L2
+(Ω)]M

F̂ λ
k [c], (4.14)

sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥dλk,i∥H1(Ω) <∞, i = 1, . . . ,M, (4.15)

0 < θ1 ≤ dλk,i(x) ≤ θ2 a.e. in Ω, i = 1, . . . ,M, ∀k ≥ 1, (4.16)

where θ1 > 0 and θ2 > 0 are positive constants independent of k and λ = (λ1, λ2) with λ1 ≥ λ
(0)
1

and λ2 ≥ λ
(0)
2 . It follows from the definition of F̂ λ

k (cf. (4.12)) and G̃λ (cf. (4.7)), and (4.10) that

αλ ≤ G̃λ[d
λ
k , u

λ
k ] = min

c∈[L2
+(Ω)]M

G̃λ[c, u
λ
k ] ≤ G̃λ[c

λ
k , u

λ
k ] < A+ 1 ∀k ≥ 1. (4.17)
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Step 4. We show that, up to a subsequence, the new energy-minimizing sequence {(dλk , uλk)}
converges weakly to some limit that is in fact a minimizer of G̃λ over [L2

+(Ω)]
M ×H.

By the definition of ψ(dλk) (cf. (4.6)), the uniform bound (4.15) and (4.11), and the regularity
theory (cf. Theorem 8.12 in [8]), we have

sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥ψ(dλk)∥H2(Ω) <∞. (4.18)

By (4.7) and (4.12), F̂ λ
k [d

λ
k ] ≤ G̃λ[d

λ
k , u

λ
k ]. This and (4.17), together with the fact that W is

bounded below, lead to

sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∫
Ω

ε

2
|∇ψ(dλk)−∇uλk |2 dx <∞.

The above two inequalities imply that sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥∇uλk∥L2(Ω) <∞. This, together with

(4.11) and Friedrichs’ inequality [22], implies that

sup
k≥1,λ1≥λ

(0)
1 ,λ2≥λ

(0)
2

∥uλk∥H1(Ω) <∞. (4.19)

It follows from the bounds (4.11), (4.15), (4.18) and (4.19) that the following hold true:
(1) There exists dλ = (dλ,1, . . . , dλ,M) ∈ [L∞

+ (Ω) ∩ H1(Ω)]M such that, up to a subsequence,
dλk → dλ weakly in [H1(Ω)]M , strongly in [L2(Ω)]M , and a.e. in Ω as k → ∞.

(2) There exist uλ ∈ H1(Ω) and hλ ∈ L2(Ω) such that, up to a subsequence, uλk → uλ weakly
in H1(Ω), strongly in L2(Ω) and L2(∂Ω), a.e. in Ω as k → ∞, and ∇ · ε∇uλk → hλ weakly
in L2(Ω). For any ξ ∈ C∞

c (Ω), we have∫
Ω

hλ ξ dx = lim
k→∞

∫
Ω

(∇ · ε∇uλk)ξ dx = lim
k→∞

−
∫
Ω

ε∇uλk · ∇ξ dx = −
∫
Ω

ε∇uλ · ∇ξ dx.

Thus, hλ = ∇ · ε∇uλ, and further uλ ∈ H.
(3) There exists ψλ ∈ H2(Ω) such that, up to a subsequence, ψ(dλk) → ψλ weakly in H2(Ω),

strongly in H1(Ω) and L2(∂Ω), and a.e. in Ω as k → ∞. By the definition of ψ(c) for any
c ∈ [L2

+(Ω)]
M (cf. (4.6)) and the regularity theory, we have ψλ = ψ(dλ) ∈ H1

g (Ω)∩H2(Ω).
In particular, ψλ ∈ H.

Consequently, it follows from the definition of G̃λ (cf. (4.7)) and Fatou’s lemma that

αλ = lim
k→∞

G̃λ[d
λ
k , u

λ
k ]

≥
∫
Ω

[ε
2
|∇ψλ −∇uλ|2 +W (dλ)

]
dx+ λ1

∫
Ω

(∇ · ε∇uλ)2 dx+ λ2

∫
∂Ω

(uλ)
2 dS

= G̃λ[dλ, uλ]

≥ αλ.

Hence, (dλ, uλ) is a minimizer of G̃λ over [L2
+(Ω)]

M × H and (cλ, ϕλ) := (dλ, ψ(dλ) − uλ) is a
minimizer of Gλ over [L2

+(Ω)]
M × H. By (4.15) and (4.16), cλ ∈ [L∞

+ (Ω) ∩ H1(Ω)]M and it
satisfies the desired boundedness.
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Step 5. We show the uniqueness of the minimizer. Suppose (ĉλ, ϕ̂λ) ∈ [L2
+(Ω)]

M × H is

another minimizer of Gλ. Define (c̃λ, ϕ̃λ) = ((ĉλ, ϕ̂λ) + (cλ, ϕλ))/2 ∈ [L2
+(Ω)]

M ×H. Since Gλ is

convex, we have αλ = Gλ[c̃λ, ϕ̃λ] = Gλ[cλ, ϕλ] = Gλ[ĉλ, ϕ̂λ]. By the convexity of W and direct
calculations, we obtain

0 = Gλ[c̃λ, ϕ̃λ]−
1

2
Gλ[cλ, ϕλ]−

1

2
Gλ[ĉλ, ϕ̂λ]

= −
∫
Ω

ε

8
|∇ϕ̂λ −∇ϕλ|2 dx+

∫
Ω

[
W

(
ĉλ + cλ

2

)
− 1

2
W (ĉλ)−

1

2
W (cλ)

]
dx

− λ1
4

∫
Ω

[
∇ · ε∇ϕ̂λ +

M∑
i=1

qiĉλ,i −∇ · ε∇ϕλ −
M∑
i=1

qicλ,i

]2
dx

− λ2
4

∫
∂Ω

|ϕ̂λ − ϕλ|2 dS

≤ 0.

Therefore, we have∫
Ω

ε

8
|∇ϕ̂λ −∇ϕλ|2 dx =

∫
Ω

[
W

(
ĉλ + cλ

2

)
− 1

2
W (ĉλ)−

1

2
W (cλ)

]
dx =

∫
∂Ω

|ϕ̂λ − ϕλ|2 dS = 0.

The first and third equation lead to ϕ̂λ = ϕλ a.e. in Ω. Applying the argument in the proof of
Theorem 3.1, we can infer from the second part being zero that ĉλ = cλ a.e. in Ω. Thus the
minimizer of Gλ is unique.

Theorem 4.2. Let Ω, ε, f , and g be the same as in Theorem 4.1. Let λk = (λ1k, λ2k) with
λ1k > 0 and λ2k > 0 (k = 1, 2, . . . ) and assume λ1k ↗ +∞ and λ2k ↗ +∞. For each k ≥ 1, we
denote Gk = Gλk

, the functional defined in (4.1), and (ck, ϕk) = (cλk
, ϕλk

), the corresponding
minimizer of Gk over [L2

+(Ω)]
M × H as given in Theorem 4.1. Let ĉ ∈ [L2

+(Ω)]
M ⊂ Y+ be

the unique minimizer of Ê : Y+ → R ∪ {+∞} and ψ̂ ∈ H1
g (Ω) ∩ H2(Ω) be the solution to the

corresponding PBE (3.24) as given in Theorem 3.1. Then,

Gk[ck, ϕk] = min
(c,ϕ)∈[L2

+(Ω)]M×H
Gk[c, ϕ] → min

c∈Y+

Ê[c] = Ê[ĉ] as k → ∞, (4.20)

ck → ĉ in [L2(Ω)]M and ϕk → ψ̂ in H as k → ∞. (4.21)

Proof. It suffices to show that any subsequence of {λk}, not relabeled, has a further subsequence,
again not relabeled, for which the convergence in (4.20) and (4.21) hold true. We divide our
proof into three steps. First, we prove the energy convergence (4.20). Then, we prove the
convergence ck → ĉ in [L1(Ω)]M and ϕk → ψ̂ in H1(Ω). Finally, we prove (4.21).

Step 1. We first note that the sequence {Gk[ck, ϕk]}∞k=1 is monotonically increasing. We also

note that ψ̂ and ĉ are related by ∇ · ε∇ψ̂ = −(f +
∑M

i=1 qiĉi) a.e Ω; cf. (3.4), (3.22), and (3.24).

Thus, by the definition of Gλ (cf. (4.1)) and F̂ (cf. (3.2)), and Lemma 3.2, we have

Gk[ck, ϕk] ≤ Gk[ĉ, ψ̂] = F̂ [ĉ] = Ê[ĉ]. (4.22)

Consequently, the sequence {Gk[ck, ϕk]}∞k=1 converges. Moreover, writing ck = (ck,1, . . . , ck,M),
we have

sup
k≥1

∥∇ϕk∥L2(Ω) <∞, (4.23)
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sup
k≥1

∫
Ω

W (ck) dx <∞, (4.24)∥∥∥∥∥∇ · ε∇ϕk + f +
M∑
i=1

qick,i

∥∥∥∥∥
L2(Ω)

→ 0 as k → ∞, (4.25)

∥ϕk − g∥L2(∂Ω) → 0 as k → ∞. (4.26)

By (4.23), (4.26), and Friedrichs’ inequality, we have supk≥1 ∥ϕk∥H1(Ω) < ∞. Thus, by the
compact embedding H1(Ω) ↪→ L2(Ω) and H1(Ω) ↪→ L2(∂Ω) [1, 7, 8, 19], there exists ϕ∞ ∈
H1

g (Ω), such that, passing to a further subsequence if necessary, ϕk ⇀ ϕ∞ in H1(Ω), ϕk → ϕ∞
in L2(Ω), and ϕk → ϕ∞ a.e. Ω. It follows from (4.24) that, up to a further subsequence, ck ⇀
c∞ = (c∞,1, . . . , c∞,M) in [L1(Ω)]M for some c∞ ∈ [L1

+(Ω)]
M and∫

Ω

c∞,i log c∞,i dx ≤ lim inf
k→∞

∫
Ω

ck,i log ck,i dx, i = 1, . . . ,M ; (4.27)

cf. Lemma 3.3 in [14]. Consequently,∫
Ω

W (c∞) dx ≤ lim inf
k→∞

∫
Ω

W (ck) dx. (4.28)

Since for any k ≥ 1 and any ξ ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω

(
∇ · ε∇ϕk + f +

M∑
i=1

qick,i

)
ξ dx = −

∫
Ω

ε∇ϕk · ∇ξ dx+
∫
Ω

(
f +

M∑
i=1

qick,i

)
ξ dx,

we have by taking k → ∞ and using (4.25) and the weak convergence ϕk ⇀ ϕ∞ in H1(Ω) that∫
Ω

ε∇ϕ∞ · ∇ξ dx =

∫
Ω

ρ∞ξ dx, ∀ξ ∈ H1
0 (Ω) ∩ L∞(Ω), (4.29)

where ρ∞ = f + ρ(c∞) = f +
∑M

i=1 qic∞,i ∈ L1(Ω). Moreover,

sup
0̸=ξ∈H1

0 (Ω)∩L∞(Ω)

|
∫
Ω
ρ∞ξ dx|

∥ξ∥H1(Ω)

= sup
0 ̸=ξ∈H1

0 (Ω)∩L∞(Ω)

|
∫
Ω
ε∇ϕ∞ · ∇ξ dx|
∥ξ∥H1(Ω)

≤ ∥ε∇ϕ∞∥L2(Ω) <∞.

Therefore, ρ∞ ∈ X and thus c∞ ∈ Y+.
Recall that ϕf ∈ H1

g (Ω) is given by (3.11). It then follows from (4.29) that ϕ∞ = ϕf+Lερ(c∞).
Now, define G0 to be the same as Gλ in (4.1), with the penalty terms excluded by setting
λ1 = λ2 = 0. By Lemma 3.2, we have G0[c∞, ϕ∞] = F̂ [c∞] = Ê[c∞]. Therefore, it follows from
various convergence of ϕk to ϕ∞, the weak convergence ck ⇀ c∞ in [L1

+(Ω)]
M , (4.28), and (4.22)

that

Ê[ĉ] ≤ Ê[c∞] = G0[c∞, ϕ∞] ≤ lim inf
k→∞

G0[ck, ϕk]

≤ lim inf
k→∞

Gk[ck, ϕk] ≤ lim sup
k→∞

Gk[ck, ϕk] ≤ Ê[ĉ], (4.30)

leading to (4.20).
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Step 2. It follows from (4.30) and the uniqueness of a minimizer of Ê over Y+ that c∞ = ĉ.
Therefore, ck ⇀ ĉ in [L1(Ω)]M as k → ∞. Additionally, by the assumption on ψ̂ and (4.29),
both ϕ∞ and ψ̂ are the solutions to (3.4) with (c, ϕ) replaced by (c∞, ϕ∞) and (ĉ, ψ̂), respectively.
Since c∞ = ĉ, we get that ϕ∞ = ψ̂ ∈ H1

g (Ω)∩H2(Ω) and that ϕk → ψ̂ weakly in H1(Ω), strongly
in L2(Ω), and a.e. in Ω.

Now, since Gk[ck, ϕk] → Ê[ĉ] = F̂ [ĉ] and {Gk[ck, ϕk]}∞k=1 is an increasing sequence, we have

0 ≥ Gk[ck, ϕk]− F̂ [ĉ]

=

∫
Ω

ε

2

(
|∇ϕk|2 − |∇ψ̂|2

)
dx+

∫
Ω

(W (ck)−W (ĉ)) dx

+ λ1k

∫
Ω

(
∇ · ε∇ϕk + f +

M∑
i=1

qick,i

)2

dx+ λ2k

∫
∂Ω

(ϕk − g)2 dS

:= Ak +Bk + Ck +Dk ∀k ≥ 1.

We have lim infk→∞Ck ≥ 0 and lim infk→∞Dk ≥ 0. Since ϕk → ψ̂ in H1(Ω) weakly, we have

lim inf
k→∞

Ak = lim inf
k→∞

∫
Ω

ε

2

(
|∇ϕk|2 − |∇ψ̂|2

)
dx

= lim inf
k→∞

[∫
Ω

ε

2
|∇(ϕk − ψ̂)|2 dx+

∫
Ω

ε∇(ϕk − ψ̂) · ∇ψ̂ dx
]

= lim inf
k→∞

∫
Ω

ε

2
|∇(ϕk − ψ̂)|2 dx ≥ 0.

By (4.28), we obtain lim infk→∞Bk ≥ 0. Combining these results, we have

0 ≥ lim inf
k→∞

(Ak +Bk + Ck +Dk) ≥ lim inf
k→∞

Ak + lim inf
k→∞

Bk + lim inf
k→∞

Ck + lim inf
k→∞

Dk ≥ 0,

hence we have
lim inf
k→∞

Ak = lim inf
k→∞

Bk = lim inf
k→∞

Ck = lim inf
k→∞

Dk = 0.

Passing to a further subsequence if necessary, we have limk→∞Ak = 0 and limk→∞Bk = 0. This
implies that as k → ∞,∫

Ω

ε

2
|∇(ϕk − ψ̂)|2 dx→ 0 and

∫
Ω

W (ck) dx→
∫
Ω

W (ĉ) dx.

Thus ϕk → ψ̂ in H1(Ω) strongly. Since ck ⇀ ĉ in [L1(Ω)]M , we have by (4.27) and a result in
[4] (Lemma 2.5 and the proof of Theorem 2.7) that ck → ĉ in [L1(Ω)]M strongly.

Step 3. Since λ1k → +∞ and λ2k → +∞ as k → ∞, there exists an integer K ≥ 1
such that λ1k ≥ 1 and λ2k ≥ 1 for any k ≥ K. It follows from Theorem 4.1 applied to the
sequence (ck, ϕk) (k = K + 1, K + 2, . . . ) that there exist Θ̂1 > 0 and Θ̂2 > 0 such that
0 < Θ̂1 ≤ ck,i(x) ≤ Θ̂2 a.e. Ω (i = 1, . . . ,M) for all k ≥ K. Consequently, since ck → ĉ in
[L1(Ω)]M strongly, for i = 1, . . . ,M , we have∫

Ω

(ck,i − ĉi)
2 dx ≤ (Θ̂2 + θ̂2)

∫
Ω

|ck,i − ĉi| dx→ 0 as k → ∞,

where θ̂2 is the upper bound for ĉ; cf. (3.26). Hence ck → ĉ in [L2(Ω)]M strongly.
Finally, by (4.25), the strong convergence ck → ĉ in [L2(Ω)]M as k → ∞, and the fact that

(3.4) holds true with (c, ϕ) replaced by (ĉ, ψ̂), we can infer that ∇ · ε∇ϕk → ∇ · ε∇ψ̂ in L2(Ω)
and thus ∆ϕk → ∆ψ̂ in L2(Ω) as k → ∞. This leads to ϕk → ψ̂ in H.
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