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Abstract

This work concerns both the classical and the ionic size-modified Poisson—-Boltzmann
(PB) models of the continuum electrostatics for an ionic solution with different cases of
charges involved. A unified approach is developed to analyze the minimizers of the PB
electrostatic free-energy functionals of ionic concentrations and the solutions to the corre-
sponding PB and the generalized PB equations. Key results of the analysis are the uniform
positive bounds for the equilibrium concentrations and the uniform bounds for the solutions
of the PB equations. Penalized and constraint-free PB energy functionals are constructed
that can be used for solving the underlying variational problems and partial differential
equations by machine learning with application to complex charged molecular systems. In
addition to the existence and uniqueness of minimizers of such new functionals, uniform
bounds with respect to the penalization parameters are obtained for such minimizers. The
convergence of the penalized models is finally established.
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1 Introduction

We consider an ionic solution with M (> 1) ionic species, occupying a bounded region 2 C R?
and study two electrostatic free-energy functionals of the ionic concentrations. One is the
classical and the other an ionic size-modified Poisson—Boltzmann (PB) functional of the ionic
concentrations. They are given by the following unified form [2, 3, 5, 12, 13, 14, 20, 21]:

FM:L

where ¢ = (cq,...,cp) with ¢ : Q@ — [0,00) denoting the concentration of ions of the ith
species (¢ = 1,..., M). The first part of F[c] is the electrostatic potential energy. The function

M
1
5P+ S(c) - 2_: paci | da, (1.1)



p: 2 — R is the charge density, defined by p = f + Ef\il qici, where f : Q — R is a given
function representing a fixed charge density and each ¢; is the charge of an ion of the ¢th ionic
species (1 <4 < M). The function ¢ : 2 — R is the electrostatic potential, uniquely determined
as the solution to the boundary-value problem of Poisson’s equation

V.eVp =— in €,
eVo p in (1.2)
o=y on 012,
where € : 2 — R is the dielectric coefficient which is a known function assumed to satisfy
Emin < €(7) < Emax Vo € Q, (1.3)

with e, and €.« two positive constants, and g : €2 — R is a given function. The second part
of the free-energy function F'[c| in (1.1) is the entropy, defined by

( M
g1 Z Ci [log(A?’ci) — 1] without the size effect,
1

S(c) = ' (1.4)
ﬁfl

\ (2

¢; [log(vic;) — 1] with the size effect,

M-

I
o

where 8 = (kgT)~' with kg the Boltzmann constant and T the temperature. Here and below,
log denotes the natural logarithm. For the case of no ionic size effect included, A > 0 is the
de Broglie wavelength, a known cut-off length. For the case of the ionic size effect included,
the summation is from ¢ = 0 to : = M. For each ¢ with 1 < ¢ < M, v; denotes the effective
volume of an ion of the ¢th species. The term for ¢+ = 0 is the entropy of the solvent, where
co : Q — [0,v51] is the solvent concentration, defined by S°M e = 1, i.e.,

M
co=vy" <1 - Z%‘Q‘) in Q, (1.5)

=1

where vy is the effective volume of a solvent molecule. The last part of Fc] in (1.1) is the
Lagrange multiplier for the constraint of the conservation of ionic concentrations, where pu;
(1 < i < M) is the chemical potential for the ith ionic species. In the model, all T, A, g;, u;,
and v; for all 7 are known constants.

Heuristically, the functional F' is convex and admits a unique minimizer in a suitable ad-
missible set of concentrations. This unique minimizer is determined by the vanishing of the
first variation 0F'[c] = 0, which leads to the Boltzmann distributions for the equilibrium ionic

concentrations and the corresponding electrostatic potential ¢; = ¢;(¢) in Q foralli =1,..., M.
In the case of no ionic size effects, these are the classical Boltzmann distributions, ¢; = ¢°e=#4¢
in Q2 for¢=1,...,M, where ¢{° is the bulk concentration of the ith ionic species in the sys-

tem. With the ionic size effect included, explicit formulas of such relations seem to be only
available for the special case of a uniform size, i.e., all the ionic sizes and the solvent molecular
size are the same [10, 11, 14, 16, 17, 23]. With the Boltzmann distributions, the charge density
is p = f+ M qici(¢) and the Poisson equation in (1.2) becomes the generalized Poisson
Boltzmann (PB) equation (PBE)

V-eVo—B(¢)=—f inQ, (1.6)
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where the function B : R — R is defined through the Boltzmann distributions ¢; = ¢;(¢)
(i=1,...,M) by B'(¢) = = 311, qici(9).

In this work, we first examine the functional F[c| defined in (1.1) and the related PBE (1.6)
for the case that the ionic charges are all positive (cations only), or all negative (anions only),
or a mixture of both positive and negative charges. We then study the penalized functionals

Ghle, 9] = /Q

M 2
+)\1/Q (V-5V¢+f+2qici) dxr + Ay /m(qﬁ—g)QdS, (1.7)
i=1

where A = (A1, Ag) with A; > 0 and Ay > 0. Note that the function ¢ in the definition of F[c| is
constrained by Poisson’s equation in (1.2) while ¢ in G,[c, ¢] is a free variable. It follows from
Poisson’s equation in (1.2) and integration by parts that the first term in F[¢] is

1 1
/—p¢dm=/§|v¢|2d9€—/ —e0p g dS,
Q2 a2 o0 2

where n is the unit exterior normal at 0f). If we neglect the boundary integral term by approx-
imation, we obtain the first term in G,[c, ¢|. The penalty terms (i.e., the A\; and Ay terms) in
G.c, ¢| force ¢ to satisfy Poisson’s equation and the boundary condition (1.2) with the penalty
coefficients A\, Ay — +o00. The constraint-free penalized energy functionals G are designed
for numerical studies of the PB electrostatics, particularly applied to charged molecules with
complex surfaces, using a machine learning approach [6, 9.

Our main results are the following:

(1) We consider a family of the PB equations with fixed charge densities f; and boundary
values g, (k= 1,2,...) and prove that each of the boundary-value problems of the PBE has a
unique weak solution ¢. Moreover, supys; ||@x|/ze@) < 0o. The proof relies on a variational
structure of the PB equation and an improved comparison argument [15].

(2) Using the direct method in the calculus of variations, we prove the existence of minimizers
of the PB electrostatic free-energy functions on suitably defined spaces of ionic concentrations
that have minimum regularity requirement; cf. [13, 14]. Moreover, we use the uniformly bounded
electrostatic potentials that are solutions to the PBE and the expected Boltzmann distributions
to construct the unique free-energy minimizing ionic concentrations that are bounded below and
above by positive constants. This is different from previous work that obtains such bounds by
a technical construction of lower energy concentrations [13, 14].

(3) Given any penalty coefficient A = (A, \y) > 0, we prove the existence and uniqueness
of the minimizer for the penalized functional G defined in (1.7). A key step in the proof is
a “change of variable” argument that allows us to disintegrate the penalty terms from other
terms in the functionals. We also prove the convergence of the penalized energy functionals
to the classical electrostatic energy functionals with respect to the energy minimizers and the
minimum energy values.

The rest of the paper is organized as follows. In section 2, we prove the uniform boundedness
for solutions of the PBE with a sequence of charge densities and boundary values. In section 3, we
prove the existence and uniqueness of the minimizer of the PB energy functionals and also obtain
the positive bounds for such minimizers. In section 4, we prove the existence and uniqueness of
the minimizers for penalized PB energy functionals and the convergence of such functionals.

M
€ 2
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2 The PB Equation

In what follows, we assume that B € C*°(R) is a strictly convex function and infscg B(s) = 0.

Moreover, it satisfies the following additional properties corresponding to three different cases:

Case 1. There exist 4,j € {1,..., M} such that ¢; > 0 and ¢; < 0. In this case, B(—o00) = +00
and B(+00) = +oo. Moreover, B'(—o00) = —oo or B'(—o0) exists and is negative, and
B'(+00) = +00 or B'(4+00) exists and is positive.

Case 2. All ¢; >0 (i =1,...,M). In this case, B is monotonically decreasing with B(—o0) =
+00 and B(+00) = 0. Moreover, B'(—o0) = —oo or B'(—o0) exists and is negative, and
B'(400) = 0.

Case 3. All¢; <0 (¢ =1,...,M). In this case, B is monotonically increasing with B(—oc) =0
and B(4o00) = 400. Moreover, B'(—oc0) = 0, and B'(+00) = +00 or B'(+00) exists and
is positive.

Figure 2.1 shows schematic of the graph of the function B for the three cases. We remark that

these properties of the function B are satisfied in general [2, 5, 13, 14].

B B B

& ¢ _— ¢

Figure 2.1: Schematic of the three cases of the function B.

We assume Q C R? is a bounded domain with a Lipschitz-continuous boundary 9. Let
e € L*(Q) satisfy (1.3), f € L*(Q), and g € H*(9). Denote

1 1 C b —
H,(Q) ={p€ H (Q):¢=gon N}
Here and below, we use the standard notation of Sobolev spaces; cf. e.g., [1, 7, 8].
Definition 2.1. A function ¢ € Hgl(Q) 15 a weak solution to the boundary-value problem of
PBE (1.6) with the boundary condition ¢ = g on 0Q if B'(¢) € L*(Q) and
/ [eEngS -VE+ B’(gb)§] dr = / fédx VE € Hy(Q).
Q Q

Let fr € L*(Q) and g € HY(Q) (k = 1,2,...). For each k > 1, we define the functional
Jpt Hy () = RU {+00} by

1ol = [ [§IVer + B@) ~ fio] de Vo€ (). 2.1)

The boundary-value problem for the corresponding Euler-Lagrange equation, which is the PB
equation, is

{v eVé—B(¢)=—fr inQ, 22)

O = g on 0f).



Theorem 2.1. Assume either
(1) Q C R3 is a bounded domain with a C* boundary 02, ¢ € L*>(Q) satisfy (1.3), and
fr € L*(Q) and g € WH(Q) (k= 1,2,...) satisfy

sup || fellL2() < o0 and sup || g |lw.ee () < 00, (2.3)
E>1 k>1

respectively; or
(2) Q C R? is a bounded domain with a C?* boundary 0Q, ¢ € WH>(Q) satisfy (1.3), and
fr € L3(Q) and gr € H*(Q) (k= 1,2,...) satisfy

sup || frl| 22y < o0 and sup || grl m2(0) < oo, (2.4)
k>1 E>1

respectively. Then, for each k > 1, the functional Jy : Hglk(Q) — RU {+o0} admits a unique
minimizer ¢, € H, (Q). Moreover, the following hold true under the assumption (1) or (2),
respectively:

(1) For each k> 1, ¢ € L*=(Q2) and is the unique weak solution to (2.2), and

sup || o || Lo () < 00; (2.5)
k>1

(2) For each k > 1, ¢, € H*(Q) and is the unique weak solution to (2.2), and

sup || x| a2e0) < oo (2.6)
k>1

Remark. The two different assumptions in the theorem will also be used in several lemmas and
theorems below. The first assumption is less restrictive and serves as a general result while the
second one s made particularly for studying the penalized and constraint-free energy functionals
m sections 4.

Proof of Theorem 2.1. Fix k > 1. Note that B > 0 and J, is strictly convex. The existence
and uniqueness of its minimizer ¢y over the set H, (Q) follows from a standard argument using
the direct method in the calculus of variations; cf. e.g., [7, 13, 14, 15]. Once it is shown that
¢r € L®(Q) in Case (1) or ¢p € H*(Q) — L>(Q) in Case (2), then by direct calculations
following the definition of the first variation and the Lebesgue Dominated Convergence theorem,
we have

/Q eV ey - VE+ B'(¢r)€ — fi€ldz =0

first for any £ € C}(Q2) and then for any £ € HJ(Q2) as C(2) is dense in H} (). Therefore, ¢y
is also a weak solution to the corresponding PBE by Definition 2.1. The uniqueness of such a
solution follows from the strict convexity of B. Therefore, we only need to prove (2.5) in Case
(1) and (2.6) in Case (2).

To continue, we first “shift” out f; in J; and then apply a comparison argument to obtain
the uniform bound (2.5) and (2.6). Fix k > 1. There exists a unique 7, € H,, (€2), such that

/ eV - VEdz = / fubdr V€€ HYQ). (2.7)
Q Q



In Case (1), gr € Wh*(Q). Thus, it follows from (2.3), the solution boundedness (cf. Theo-
rem 8.16 in [8]) and the embedding W1>°(Q2) — L>(9Q) that n, € L=(Q) (k =1,2,...), and
there exists a constant C' = C'(Q2) such that

sup [[mel| (@) < C'sup (|| full L2@) + lgrllwre(e)) < oo (2.8)
k>1 k>1

In Case (2), e € Wh>(Q) and g, € H*(Q2). By (2.4), the regularity theory (cf. Theorem 8.12 in
8]) and the Sobolev embedding H?*(Q2) < L>(Q), we have

sup |1k || 2@y < 00 and sup |1k || Lo () < 0. (2.9)
E>1 E>1

For any ¢ € H) (), let w = ¢ —m, € Hy(2). By (2.7) with £ replaced by w, we have by
direct calculations that

Ji[¢] = TP ] +/ <§|V77k|2 - fkﬂk) du,

Q

where the integral term is a constant for a fixed k and
JE ] = / Eyvfwﬁ + B(w + m)} dr  Yw e HLQ).
Q

Therefore, the minimization of J, over ¢ € H, () is equivalent to the minimization of .J *) over
w € H(Q). By the direct method in the calculus of variations, there exists a unique wy € Hj ()
that minimizes J® : H}(Q) — R U {+oc}. Clearly, ¢ = wi + . By (2.8) and (2.9), it now
suffices to prove

For Case (1): sup ||wg || Lo () < 00, (2.10)
k>1

For Case (2): sup || wi|| g2@q) < oo. (2.11)
k>1

We consider three cases.

Case (i). There exist ¢ and j such that ¢; > 0 and ¢; < 0. In this case, B'(—o0) = —o0 or it
exists and is negative, and B’(4+00) = 400 or it exists and is positive. By (2.8) and (2.9), there
exist A > 0 and a > 0 independent of &, such that

B'A+mn)>a and  B'(=A+mn) < —a ae Q. (2.12)
Now for each k, we define wy, 5 : 2 = R by

- A if wi(z) < =,
wia(z) = we(x) i — X <w(z) <A,
A if wg(x) > A

We verify that wy, € HE(Q) and |[Vuwya| < |Vwy| ae. in Q. Since J®[wy] < J®|wy,], it
follows that

/B(wk,,\—i—nk)dxz/B(wk+nk)d3:.
Q Q
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Consequently, we have by the convexity of B and (2.12) that

OZ/B(wkﬂ”?k)df—/B(wk,Aank)dw
Q Q

Il
—

(Blw, + 1) — B(-A+ )] do + / (Blwg + 1) — B+ )] da

{wp<—A} {wp >}

Vv

B\ + ) (wk+>\)d:v+/ B+ ) (wy — N) da

wp<—A} {we>A}

—a(wy, + A) do + / a(wg — \) dx

wi<—A} {wp>A}

[V
—

a(]wk]—)\)dx—l—/ a(Jwg] — A) dx

{wp<—A} {wp >N}

a(|wg| — A) dz

{lwk|>A}

Vv
o

Thus, |wi| < X a.e. Q. Hence, (2.10) holds true as \ is independent of k. Moreover, wy, € HE ()
is a weak solution to V - eVwy = B'(wy + 1) in Q. The assumptions on ¢ and 2 in Case (2),
(2.9), and the regularity theory (cf. Theorem 8.12 in [8]) imply that wy € H*(Q2) and (2.11).

Case (ii). All¢; >0 (i =1,..., M). In this case, B'(—00) = —oo or it exists and is negative.
By the same argument, there exists A > 0 and b > 0, independent of k, such that

B'(=X+m) <—=b  ae. Q. (2.13)

For each k, we define wy » : 2 — R U {400} by

s () = { - if wy(x)

<
wg () if wg(z) > —

We have wyx € HL () and |Vwy | < [Vwy| ae. in Q. Since J®[w,] < J®[wy,\],

/B(wk,,\—l—nk)dxz/B(wk+nk)dx.
Q Q

Thus, we have by the convexity of B and (2.13) that

02/B(wk+nk)d$—/3(wk,x+77k)dx
Q Q

[B(wy + 1) — B(=A+ )] dx

I
—

{we<=A}

v
—

B' (=X + ) (wy, + \) dz
{wk<f)\}

—b(wy + A) dx
{wk<—)\}

v

v
o



Consequently, we have

wg > —A ae Q Vk>1. (2.14)
Since A is independent of k, this and (2.8) or (2.9), together with the fact that B'(+o00) = 0 in
this case, imply that [B(wg + n, + t§) — B(wg + nx)] /t (0 < |t| < 1) are uniformly essentially
bounded in Q for any ¢ € C}(Q). Therefore, since w;, € HE(2) minimizes J*) over H} (), we
have by the routine calculations using the Lebesgue Dominated Convergence theorem that

/ Vg - VE+ Blwg + )l de =0 Ve € CLQ).
Q

This is also true if £ € H}(Q), since C}(Q2) is dense in HJ (). Thus, wy € HJ(Q) is a weak
solution to V-eVwy, = B'(wy, + ). For Case (1), since supys; || B’ (wi + k)| o) < 00 by (2.8)
and (2.14), we obtain (2.10) by the solution boundedness (cf. Theorem 8.16 in [8]). Similarly,
with the assumptions on €2 and ¢ in Case (2), we have by (2.9) and the regularity theory (cf.
Theorem 8.12 in [8]) that wy, € H*(Q2) and (2.11) holds true.

Case (iii). All ¢; <0 (i =1,...,M). This is similar to Case (ii). O

3 The PB Free-Energy Functional

In this section, we study the PB functional F'|c] defined in (1.1), which is rewritten as

1
Flc] :/ {iqu—i- W(c)} dx (3.1)
Q

and the related PB functional

~ €

Flc] = / [§|V¢\2 + W(c)} dx. (3.2)

Q

Here, Q C R? is a bounded domain, ¢ = (cy,...,cp),

M
W(c) =5(c) - Z/Jz‘cu (3.3)
i=1
and ¢ is the unique weak solution to (1.2) defined by ¢ € H;(Q) and
[evo-ved =06 vee mi@). (3.4)
Q

where p = f—{—zij\il gic; and {p, &) = p(&) if p € H~1(Q). If the integral of p& over ) exists, then
(p, &) is the same as that integral. Note that F [c] is the first part of the penalized functional
Gilc, ¢] defined in (1.7).

We first define a suitable set Y, C [LY(Q)]™ of admissible concentrations and reformulate
these functionals into new and equivalent ones for all ¢ € Y, which have the minimal regularity.
Let © C R3 be a bounded domain with a Lipschitz-continuous boundary 9Q. We consider
functions p € L'(Q) such that

[ s
Q

sup < 00. (3.5)

1
oeeni@nr=(@) [[€lla1 @)
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We define
X = {p e L'(Q) : condition (3.5) holds true} . (3.6)

Clearly, X is a vector subspace of L*(f2). The following elementary lemma indicates that each
p € X can be extended uniquely to an element in H~!(Q) and we omit its proof:

Lemma 3.1. Let p € X. There exists a unique T, € H () such that
T6) = [ pede ¥ € HYR)NI¥(Q),

1,6) = Jim [ pode ¥ € H(@),
where &, € Hy () N L¥(Q) (k; >1) and & — € in HY(Q),

T\l 1) = sup /pfd:c .
0£EEHE (NL> (R ||§||H1 Q
Moreover, the space X is a Banach space with the norm ||p||x = ||pller) + | Tpll m-1(0)- O

We denote (T, &) = T(§) forany T' € H1(2) and & € H}(Q). If p € X, then we shall identify
T,=p. If £ € H}(Q), then (p,&) = (T,,&). It £ € HY(Q) N L>(Q), then (p, &) is the integral of
p€ over (2. We define

Y:{c:(cl,..., v) € [LY(Q) qucleX} (3.7)
Vi={c=(c1,...,ecm) €Y 1€ [LL( )M, i=1,..., M}, (3.8)

where LA () = {u € LP?(Q2) : u > 0 a.e. Q} for any p: 1 < p < oco. For any ¢ € Y, define

M
elly = Z el + lp(e) ][ a-1(0)
=1

We can verify that (Y, ]| - ||y) is a Banach space, Y, is a convex and closed subset of Y, and
L2 C Y, C [LL()

Now let e € L>®(f) satisfy (1.3). Note that if ¢ € Y} and ¢ € H}(Q) is the weak solution
to V-eVo = —(f + p(c)) with p(c) = oM, gic;, then the integral of p(c)¢ is not well defined
in general. Therefore, we reformulate the functional F[c]. We also reformulate the functional
F[c] for a unified treatment. To do so, we first define L. : H~'(Q) — HL(Q) as follows: for any
h e H1(Q), L.h € HY(Q) is the unique weak solution to V - eV L.h = —h, defined by

/ eV(L.h) - VeEdr = (h,€)  VE € HY(Q). (3.9)
Q
It is clear that the operator L. : H~'(Q) — HJ () is linear, continuous, and self-adjoint,

<h1, L5h2> = <h27 L5h1> = / €VL€]'L1 . VLEhQ dx \V/hl, hy € H_I(Q) (310)
Q



Moreover, (hy, hy) + (hy, L.hy) defined by (3.10) is an inner product of H~1(2). It induces the
norm || || := +/(h, L.h) on H~(Q) and the norm is equivalent to the H~*(2)-norm.

Let f € L*(Q) and g € H'(Q). For any ¢ € Y, we have p = f + p(c) € H1(Q) N LY(Q).
Let ¢f € Hgl(Q) be the unique weak solution to V - V¢ = — f defined by

/€V¢f~V§dx:/f§dx Ve € HY(Q). (3.11)
Q Q

If ¢y € H,(Q2) N L>®(Q), then ¢pp(c) € L*(). In this case we define £ : Y, — RU {+oo} by

1 1 1
Bl = [ [5I9L0F + 37 Leo(e) + 50p(0) + WO | dot [ Sfopde a2
We also define £ : Y, — R U {+oc} by

B[] :/Q [%]VLEp(C)F—l—ngp(C)+W(c)} dx—i—/g%|v¢f|2dx. (3.13)

Lemma 3.2. Assume either
(1) Q C R3 is a bounded domain with a C* boundary 09, € € L>=(Q) satisfy (1.3), f € L*(Q),
and g € W>°(Q); or
(2) Q C R? is a bounded domain with a C* boundary 090, e € Wh(Q) satisfy (1.3), f €
L*(2), and g € H*(Q).
Then E[c| = Fc] for any c € [L2(Q)]M and Elc] = F[c] for any c € Y.

Proof. We first note that ¢y € L>(€2) by the global boundedness of solution (cf. Theorem 8.16
in [8]) with the assumption (1) or by the regularity of solution (cf. Theorem 8.12 in [8]) and
the Sobolev embedding H?(Q) < L>*(2) (cf. [1, 8]) with the assumption (2). Thus, F|c] is well
defined for any ¢ € Y. We also note the following: for any ¢ € Y, by setting h = p(c) and
¢ = L.p(c) in (3.9), we obtain

()2 = (ple), Lep(e)) = / eIV Lep(o)]? do. (3.14)

Let ¢ € [L2 ()], then ¢ € Y. We show that E[c] = F[c] with the assumption (1) or (2).
Note that p = f 4 p(c) € L*(2). Let ¢ € H,(Q) be given by (3.4). With ¢y given by (3.11), we
have ¢ = ¢y + Lep(c) € Hy(Q). Tt thus follows from (3.14) that

/Q o = /Q S(F 4 PO By + Lep(c)) d
— /Q {%p(c)Lsp(C) - %fLsp((:) + %¢fﬂ(c) + %f@} dz
:/Q E\VLE,)(C)F + %fLsp(C) + %Qbfp(c)} dw+/ﬁ%f¢f dr.

Comparing this with the definition of F[c| (cf. (3.1)) and Elc] (cf. (3.12)), we see that they are
the same.

10



Now, let ¢ € Y. We still have ¢ = ¢+ L.p(c). Hence, by (3.11) with £ = L.p(c), we obtain
5 re 5
[ 5Ivepds= [ [S1V6- 6P +eV(6-67)- Vo, + 5[Vor?] o
) ot

e £
_ /Q S IVLep(e) P + eV Lap(c) - Vo + S|V, ] do

_ / _§|VL5,0(C)|2 + fLEp(C) + g|v¢f|2:| dx.
ol

Consequently, it follows from the definition of F[¢] (cf. (3.2)) and E[¢] (cf. (3.13)) that they are
the same. O

We now calculate the first variation of E and E at a set of concentrations ¢ = (c1,...,cnm) €
[L2(€2)]* such that each component of ¢ is bounded below by a positive constant and derive
the corresponding (generalized) Boltzmann distributions and the PB equation [5, 13, 14, 17].
Our approach is then to use the boundedness of solution to the PB equation established in
Theorem 2.1 and the derived Boltzmann distributions to construct the ionic concentrations and
show that they minimize the free-energy functional.

First, let

ug = ¢y — L f € Hy(Q). (3.15)

Note that u, € H,(€) is the unique weak solution to V - eVu, = 0 defined by
/ eVu, - Védr =0 V&€ Hy(Q). (3.16)
Q

Now let ¢ = (ci,...,cy) € Yy and d = (dy,...,dy) € [CHQ)]M. By the definition of L. (cf.
(3.9)), ¢ (cf. (3.4)), &5 (cf. (3.11)), and u, (cf. (3.15)), we obtain L.p(c) + L.f = ¢ — u, and
¢5 = ug + L. f. Therefore, we have

SE[][d] = Elc+td]

t=0

VLLp(E) - TLepld) + S Lepld) + G50(d) + VW) - do

I
S~ S~ 5— &I~

(LpONpla) + §{Lef +07)ola) + VW (e) -] da

'(Lap<c> b o(Lef + m)) p(d) + VIV (c) - d} da

[
S—

[(%W(C) Y (¢ - %)] d; d.

1=1

Since W (c) is given in (3.3), we thus obtain

?

0, Elc] = 0.,5(c) — pi + g (qb - %) , i=1,...,M. (3.17)

Setting 6 E[c] = 0, we obtain the equilibrium concentration ¢. Similarly, we have for £ that

o, Elc] = 0.,5(¢) — i + ¢ (p—ug), i=1,..., M. (3.18)
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In this case, the equilibrium concentration ¢ is determined by §F [c] =0.

The following proposition indicates that the equilibrium conditions (3.17) or (3.18) determine
a one-to-one correspondence between the equilibrium concentrations ¢ = (¢, ..., ¢y ) and the
equilibrium electrostatic potential ¢:

Proposition 3.1. (1) The system of equations
define the bijection B; : R — (0,00) (i = 1,..., M) with each B; € C*®°(R) and B;' €
C*((0,00)). Moreover, B;(A) C (0,00) is compact in (0,00) if A C R is compact in R.
(2) The function B : R — R defined by
M ¢
BO) =Y a [ Be)de+ Bo (320)
i=1 V0

with By a constant such that infscg B(s) = 0, satisfies all the properties assumed in sec-
tion 2.

We shall call ¢; = Bi(¢) in Q (i = 1,..., M) the (generalized) Boltzmann distributions
of ionic concentrations ¢ = (cq,...,cy) with respect to the electrostatic potential ¢ = ¢(x)
(x € Q).

Proof of Proposition 3.1. We consider two different cases, without and with size effects, defined
in (1.4). For the case of no size effect, we have for each i (1 < ¢ < M) that 0,5(c) =
B~ tog(A3¢;). Hence, Eq. (3.19) defines B;(¢) = e P4% with ¢° = A=3e#. Since ¢; # 0, B;
is a bijection from R to (0,00). It is clear that both B; and B; ! are C*-functions and that
B; maps a compact subset of R to a compact subset of (0,00). In this case, we have by (3.20)
that B(¢) = B~ oM, e P4% 4 by, where by is a constant so that infyeg B(s) = 0. Direct
calculations verify that the function B € C'*(R) satisfies all the properties for B in section 2.
For the case of size effect included, these results are proved in [13, 14, 16]. O

We note that, if the size is uniform with the volume being v for an ion of any species and
for a solvent molecule, then [3, 13, 14]
e Paid v LeBri

_ ks with ¢ =—" =1 M
L+vd ) c(ePud —1) L+ e

Bi(¢)

However, such an analytical formula seems not available for ions with non-uniform sizes.

Note that for each set of concentrations ¢ = (cy,...,cp), the corresponding electrostatic
potential ¢ € H gl(Q) is the unique weak solution to the Poisson equation corresponding to the
charge density p = f + p(c); cf. (3.4). If ¢ is an equilibrium, i.e., §E[c] = 0 or 6E[c] = 0, then it
follows from (3.17), (3.18), and Proposition 3.1 that

For FElc| : p(c) = Zqici = -5 ( — %) : (3.21)
For E|c] : p(c) = Z%Ci = —B'(¢ —uy). (3.22)
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The Poisson equation (cf. (3.4)) then becomes the (generalized) PB equation for the equilibrium
electrostatic potential ¢, given by

For Ele]: V.-eVg— B (¢ - %) - —f mQ (3.23)
For E[d] : V-eVo—B(p—u,)=—f inQ. (3.24)

We conclude from our calculations that if ¢ minimizes E or E, and if each component of ¢
is bounded below and above by positive constants, then the corresponding ¢ € H, ;(Q) defined
by (3.4) solves the PBE (3.23) or (3.24). Conversely, if ¢ solves the PBE (3.23) or (3.24), then
we can construct the concentration ¢ = (c1,...,cm) by ¢ = Bi(¢ — uy/2) or ¢; = Bi(¢ — uy)
(i=1,...,M) to minimize F or E.

The following is our main result in this section:

Theorem 3.1. Assume either (1) or (2) as in Lemma 3.2. Then there exist a unique minimizer
d=(dy,...,dy) of E: Yy = RU{+00} and a unique minimizer d = (dy, ..., dy) of E: Y, —
RU {+oo} given respectively by

B,;(zb—%) and cZi:Bi(zﬁ—ug) inQ, i=1,..., M, (3.25)

where 1,1 € H, () N L>(Q) with the assumption (1) and R H, () N H*(Q) with the
assumption (2) are the unique weak solution to the PB equation (3.23) and (3.24), respectively.
In particular, d,d € [L2(Q) N HY Q)M and there exist positive constants 0; and 0; (i =1,2)
such that

0 <d; <0, and 6, <d; <0y ae Q, i=1,..., M. (3.26)

Proof. We only consider the functional E as the proof for the functional E is similar.
Step 1. We first establish the existence and uniqueness of the minimizer of F. Since L.
H7Y(Q) — H}(Q) is self-adjoint, and L. f € L*°(Q) following the assumption (1) or (2), we have

/QfLEp(c) dr = /Q(Lsf)p(c) dx YeeY,.

Denoting n = (L.f + ¢¢)/2 € L>(Q2) and V(c) = np(c) + W(c) for any ¢ € Y,, we can rewrite
the energy Flc] (cf. (3.12)) as

1
Elc] = / F\VLEp(c)\2 + V(C)} dx +/ —fordr  VeeY,.
ol2 02
By (1.4) and (3.3), we have
M
g1 Z ¢; [log ¢; + o] without size effect,

Vie) = v (3.27)
B! Z ci[logc; + 73] + B e [log(vocy) — 1] with size effect,
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where o; and 7; are some functions in L>(2) that are independent of ¢ € Y, and ¢ is a function
of (¢1,...,cpr) as defined in (1.5). Note that V' is bounded below and it is also convex [13, 14].
Therefore, by setting hy = hy = p(c) in (3.10) and by the remark below (3.10), we have

B0 2 Cllo(Olfy oy + [ Viedo+ G Ve Ve
Q

where C; > 0 and Cy are two constants.
Let v = inf.cy, Elc]. Since V(c) is bounded below for any ¢ € Y,, v is finite. Let ¢ =

(cgk), . ,CE\Z)) €Y, (k=1,2,...) be such that E[c¢®)] — . We have

sup [|p(c™)]| -1y < oo and sup/ V(™) dz < oco. (3.28)
k>1 k>1 JQ

We claim that, up to a subsequence that is not relabeled, ¢® — d in [L'(Q)]M for some
d=(dy,...,dy) € [LE(Q)]M. In the case of no size effect included, this follows from that fact
that V(c) is superlinear (cf. (3.27)), the second inequality in (3.28), and de la Vallée Poussin’s
criterion [18] (cf. the proof of Lemma 3.3 in [14]). In the case with the size effect included, this
follows from the fact that all the concentrations are bounded (cf. (1.5)) and hence, there exists a
subsequence of {c®} that converges weakly in [L?(Q)]™ and hence weakly in [L'(Q2)]™ to some
d = (dy,...,dy) € [L2(Q)]M C Y. Since ¢® — d in [L*(Q)]M, we have by the convexity of
V (c) for both of the cases that [13, 14]

lim inf / V(™) dz > / V(d) da. (3.29)

k—o0 Q

By the first inequality in (3.28), there exists a subsequence of {¢®)}, not relabeled, such that
p(c®) — hin H71(Q) for some h € H~1(Q). Since ¢® — d in [L}(Q)]M, by the definition of
p(c) for any c € Y, (cf. (3.7) and (3.8)), p(c®)) — p(d) in L*(€2). Thus,

h(€) = lim [ p(c®)edx = / p(d)édx V€€ HY Q)N L®(Q).
k—o0 Q Q

Consequently, p(d) = h € X and hence d € Y. Since p(c®) — p(d) in H~1(Q), we have
limy 00 (p(c®)) — p(d), Lep(d)) = 0. Splitting the terms, we have by (3.10) that

lim inf / |V Lop(c®)[? dx
02

k—o00

> lim inf / [g]VLEp(c(k)) — VL.p(d)] + §|VLEp(d)ﬂ da
Q

k—o0

+ lim inf / e (VLep(c™) = VLep(d)) - VLep(d) dw
Q

k—o0

> [ SIVLp@P do + timint (o) = p(d). Lepld)
QO 2 k—o0
:/E|VL€p(d)|2dx.
Q2
This and (3.29) imply v = liminf;_, E[c(k)] > E[d] > ~. Hence d € Y, is a minimizer of
E:Y, -5 RU{+o0}.
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Assume d € Y, is also a minimizer of E over Y. Clearly, (d+d)/2 € Y,. Since F is convex,
we have (d + d)/2 is also a minimizer of F over Y. Therefore, by direct calculations, we have

1 .~ 1

— 5Bld) - SEld

d+d

0=F
2

- / SV Lepld) — VLep(d)d + /
(9] Q

d+d\ 1 - 1
< VI {——| —-zV(d) - =V(d
</ ( ; ) V() - V()
Since V' is convex on [0,00), the integrand of the last integral is non positive and therefore

vanishes a.e. in €. Moreover, since ¢qlog(vgcg) is convex in (¢, ..., cpr) [13] for the case of size
effect included, we have by the definition of V' (cf. (3.27)) that

dx.

v (#) = %Vi(d) + %Vi(d) inQ, i=1,..., M, (3.30)
where Q; C Q with the measure |Q\ Q;| = 0 and Vi(c) = 7' 3o, e;(log ¢; + ;) with ; = 0; or
7, (i =1,..., M). Note that each V; is convex at every point in ;. Fix i. We verify from (3.30)
that d;(z) = 0 if and only if d;(x) = 0 for any = € ;. If both d;(z) and d;(z) are nonzero for
some x € €, then by (3.30) and the strict convexity of V; on (0, 00), we infer that d;(z) = d;(z).
Therefore, d = d a.e. Q and the minimizer is unique.

Step 2. We establish the bounds for d and show that d € [H'(Q)]*. To do so, we construct
the set of concentrations using Boltzmann distributions and verify that it is indeed the minimizer
d and it satisfies the desired properties.

By Theorem 2.1 with f, = f and g, = g/2 for every k, there exists a unique 9y € Hgl/Q(Q)
that minimizes J : Hj () — R U {400} defined by

Il = [ [SI90F = fo+ B@)] de. o€ 1),

where B is defined in (3.20) in Proposition 3.1. Moreover, ¢y € H;/Q(Q) N L>(Q2) with the
assumption (1) and ¢y € H, ,(Q) N H?*(Q) C H, ,,(Q) N L>(Q) with the assumption (2) is the
unique weak solution to the corresponding PB equation defined by

| Ve Vet Bupgan= [ fear vee o). (3:31)

Recall that u, € H;(€2) is defined in (3.16). We have u, € Hj(Q2)NL>*(2) under the assumption
(1) and u, € HJ(Q) N H?*(Q) C Hj(Q) N L®(2) under the assumption (2). Define

Uy

Y =15+ 5

Note that ¢ € Hy(Q) N H*(Q) with the assumption (2). By (3.15), (3.16), and (3.31), we infer
that v is the weak solution to the PB equation (3.23), i.e.,

€ H,(Q) N L=(Q). (3.32)

/Q eV VeE+ B (v— ) €] dr = /Qfgdx Ve € Hi(Q). (3.33)
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Now, let us define b = (by,...,by) : Q — RM by

b,-:BZ-< —%> i=1,..., M, (3.34)

where each B; is defined in Proposition 3.1. By the definition of B (cf. (3.20)),

plb) = iqibi =B (v-2).

By the definition of L. : H'(Q) — Hg() (cf. (3.9)) and the fact that ¢ € H, () N L>(Q)
(defined in (3.32)) is the weak solution to the PBE (cf. (3.33)), we have

Y =g+ Lef + Lep(b). (3.35)

Clearly, b € [H'(Q)M as ¢ —u,/2 € H' () N L>*(Q) and B; € C*(R) by Proposition 3.1.
Moreover, since ¢ — u,/2 € L®(£2), it follows from (3.34) and Proposition 3.1 that there exist
positive constants #; > 0 and 63 > 0 such that 6; <b; <6y ae. Q (i=1,..., M).

It remains to show that the constructed concentrations b = (by,...,byr) (cf. (3.34)) is in fact
a minimizer of £ : Y, — R U {+00}. Once this is shown, then by Step I of the proof, b = d,
which is the unique minimizer of F over Y,, and by the bounds on b, d satisfies the desired
inequality.

For any ¢ € Y, , we have

3

Bl ~ Bl = [ 59 (Lpe) = Lotb) - V (Lep(c) + Lepl®) da

# [ (578000 = 520 ) ot [ (GotcIoy — go0rer) do
+ /Q (W (c) — W (b)) d
= A1+ Ay + As.
By the definition of the operator L. (3.9), we obtain
[ ETLp(6) -5 (L) + Lep(t)) dx = (p(0). Lep(e) + Lep(D),
/Q eVLp(b) - V (Lep(c) 4+ Lep(b)) dz = (p(b), Lep(c) + Lep(b)),

leading to

Ay = /Q gv (Lep(ec) = Lep(b) - V (Lep(c) + Lep(b)) do = %(p(c) = p(b), Lep(c) + Lep(b)).

Since L. : H1(Q) — H}(Q) is self-adjoint, we have
1 1 1 1
to= [ (Gr20(0) — 51200 ) o+ [ (Gotcro — 5o000r) do
Q Q

16



= 5{ple) = p(b), Lef) + [ (¢) = p(b)] ¢ dur.

Note that W(c) and S(c) are related by ( ) By our definition of b; (cf. (3.34)) and Propo-
sition 3.1, we have 0.,W(b) = 0.,S(b) — i = —¢qi (¢ —uy/2) (i = 1,..., M). Therefore, by the
convexity of W, the bounds #; < b; < 02 a.e. 0 (1 =1,...,M), and the fact that u, € L>()
(cf. (3.15)) and ¢ € L*(R2) (cf. (3.32)), we have

Aa= [ e —w( dx>/[zy%W 4d:=;AM@—p@H%—%mw

By (3.15) and (3.35), ¢5 +uy — 2¢p = —L.f — 2L.p(b) € Hy(S2). Consequently, it follows the
estimates of Ay, Ay, and Az and the definition of L. (cf. (3.9)) that

[—
l\')lr—\
\

Bl — BB > 3{p(e) — plb), Lep(e) + Lep)) + 3 (p(c) — o), L.f)
=5 [ 1(0) = pO)] (Lo + 2Lp(t)] da
= S06(e) = p(B), Leple) = Lep(d))
= | 51V ILple) = Lep(®)) P o
>0
Hence b is a minimizer of E over Y. O

Let fr € L*(Q) and g € HY(Q) (k= 1,2,...). For each k > 1, we define Fj, : [L2(Q)]M —
R U {+0o0} by (cf. (3.2))

- £
Fild = / [§|V¢k\2 + W(c)} dz,
Q
where ¢, = ¢x(c) € H, (Q) is determined by

M
/ eV - VEdr = / (fk + Z qici> Edx V¢ € Hy(Q). (3.36)
L & i=1

The following corollary generalizes the above theorem and will be used in the next section:

Corollary 3.1. Let Q C R3 be a bounded domain with a C* boundary 052, ¢ € Wh>(Q) satisfy
(1.3), and f, € L*() and g, € H' () (k =1,2,...). Assume sup;s, ||fk||L2 < 00. For each
k> 1, let p® € H}(Q) be the unique weak solution to the PB equation

V-eVp® —B' Py = —f,  in Q. (3.37)

Then, each ¥® € H?*(Q) and SUDg>; Hzﬂ(k)HHz(Q) < 0. Moreover, if dy = (czk,l,...,cth) :
Q — RM s defined by dy; = B;(¥W) (i = 1,..., M), then each d), € (L2 ()M is the
unique minimizer of Fy : [L2(Q)M — R U {+oo}, dp € [L(Q) N Hl(Q)] (k=12..),
SUDg>1 ||dk,i||H1(Q) < oo (i=1,...,M), and there are positive constants 0, and 05 such that

0<by <dp; <0 ae Q Vi=1,...,M, Vk>1. (3.38)
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Proof. For each k > 1, let 0, € H ;k (©) be defined uniquely by
/ eV, -Védr =0 V&€ HY(Q). (3.39)
Q

Let ¢ € [L2(Q)]M and ¢, = ¢i(c) € H;k () be given in (3.36). Let vy (c) = ¢p(c) —me € HE ().

Then we have

M
/ﬁvw(c)'vfdx:/ (fk+ZQiCi> Ede V€€ Hy(Q).
@ @ i=1

Regularity theory (cf. Theorem 8.12 in [8]) implies that ¢x(c) € H?(Q). Direct calculations
using (3.39) with ¥ (c) replacing £ lead to

Fild = F® ] + /

IS
—’V?]k|2 dx,
Q2

where

POl = [ [BIVaR + W d vee @),

Thus, for each k& > 1, the minimization of F}, over [L%F(Q)]M is equivalent to the minimization
of F®) over [L2(Q)]M.

By Theorem 3.1, with F, f, and g there replaced by Fi ®) £ and 0, respectively, for
each k > 1, there exists a unique minimizer dy, = (dg1,...,dpn) of F® over [L2 ()] and
dp € (L2 ()N HY()]M. Moreover, by (3.25) and the fact that u, = 0 (cf. (3.16)) since g = 0, we
have ci;“ = B;(¢®)) (i =1,..., M), where ¢/® € H}(Q) is the unique weak solution to the PB
equation (3.37). By Case (2) of Theorem 2.1, supj, ||1ﬁ(k)||Hz(Q) < 00, and hence by embedding
SUPg>; ||r(;(k)||LOO(Q) < 00. Therefore, since dy; = B;(¢®) (i = 1,..., M), (3.38) holds true, and
further, since each B; is smooth, supjs, ||02k7i||H1(Q) <oo (i=1,...,M). O

4 Penalized PB Free-Energy Functionals

We now consider the penalized functionals G,[c, ¢] defined in (1.7). Using the function W
defined in (3.3) and the notation p(c) = Zf\il gici for ¢ = (cq, ..., cpr), we rewrite the functional
Gy as

Grle,d] = /Q SV + W ()] dr
+)\1/Q(V-€V¢+f+p(c))2dx+/\2/m(¢—g)2d5. (4.1)

We define H = H(Q) by H ={u € H'(Q) : Au € L*(Q)}, where Au is defined in the weak
sense, i.e., Au € L*(Q) is determined by

/Aufdx:/uAﬁdx VE € C(Q).
Q Q
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If u € H'(Q) then we have equivalently

/QAugda::—/QVu-Vfdx Ve € Hy(Q). (4.2)

We define for any u,v € H
(1, vy = /Q(uv FVu-Vo+ AuAv)de and  [lully = {wa),. (4.3)
We can verify directly that (-,-)y and || - ||z are an inner product and the corresponding norm

on H, respectively, and H is a Hilbert space.
Let £ € Wh(Q) satisfy (1.3) and u € L*(Q). If there exists w € L*(2) such that

/wﬁdx:/u(v-evg)dx Ve € C2(Q),
0 Q

then we say V - eVu exists in the weak sense and V - eVu = w. If u € H'(Q) then equivalently

/(V -eVu)dr = — / eVu-Védr V€€ Hi(Q). (4.4)
Q Q

Assume u € H'(Q) and Au € L?(Q) exists. Setting & = en in (4.2) for any n € H}(),
we see from (4.4) that V - eVu = Vu - Ve + eAu € L*(Q). Similarly, assume u € H'(Q)
and V - eVu € L*(Q). Setting £ = n/e in (4.4) for any n € H}(Q), we see from (4.2) that
Au = (V-eVu—Vu-Ve)/e € L*(Q). Therefore, if u € H'(Q) then Au € L?(Q) (which implies
that u € H) if and only if V - eVu € L*(€Q). In this case, V- eVu = Ve - Vu + eAu a.e. in Q.

Theorem 4.1. Let Q C R? be a bounded domain with a C? boundary 052, ¢ € Wh>°(Q) satisfy
(1.3), f € L*(Q), and g € H*(Q). Let \\” > 0 and A > 0. For any Ay > A” and Ay > A,
there exists a unique (cx, o) € [L2(Q)]M x H such that

G , = i Gailc, @l. 4.5
e, i) (c,¢)E[LI§_l%3)]M><H ale, @) (4.5)

Moreover, there exist constants 61 > 0 and 65 > 0, independent of \y and )s, such that
0<0,<cri<by ae i, i=1,...,M.

Proof. Fix A = (A1, A2) with \; > )\go) and Ay > )\go). We divide our proof into five steps.
Step 1. We first reformulate the energy functional using a new pair of variables. For any
c € [LA(Q)]M, we define ) = 4(c) € H(Q) by

/QaeV@D(C) -Védr = /ﬂ (f + ;qiq) £dx V¢ € Hy(92). (4.6)

Regularity theory (cf. Theorem 8.12 in [8]) implies that (c) € H?(Q). We define Gy :
[L2()M x H — RU {+00} by

Gileu] = /Q (£ 1V6(0) = Vul + W(e)] dar -+ /

(V- eVu) dz + X / 2dS (A7)
Q

o0
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and verify that
Gile,d] = Gile,u] withu=v(c) —p€ H V(e ¢) € [LE()M x H. (4.8)

Note that (¢, ¢) minimizes G over [L% ()M x H if and only if (¢,u) = (¢,9(c) — ¢) minimizes
Gy over [L2 ()M x H. Hence, it suffices to show the existence of a unique minimizer of G',
over [L2 ()M x H.

Step 2. We employ the direct method in the calculus of variations and specify an energy-
minimizing sequence. Denote

ay = inf Gilc,u] = inf Gile, 9. (4.9)

(ca)elL2 (@M xH (c)lL2 (M xH

Choose ¢© =0 € [L3 ()™ and let ¢¥ € H (Q) N H*(Q) be such that V- eV¢©® = —f in Q.
Then A := Gy[c?, ] is independent of A. Since € is bounded and W is bounded below, we
have —oo < ay < A. Therefore, there exist (cp,up) € [L2(Q)M x H (k=1,2,...) such that

~ 1
ay < Giley, up)] <oz,\—|—E <A+1 Vk > 1. (4.10)

These inequalities and (4.7) imply that

sup IV - eVupllz2) < oo and sup upllz2(a0) < . (4.11)
E>1,00 >0 Ao >A0 k=10 >A Ao >AL0

Step 3. Fix k > 1 and hence u}. We minimize G\[-,u}] over [L2 (Q)]™. By the definition of
Gy (cf. (4.7)) and (c) (cf. (4.6)), this is equivalent to minimizing F}[c] over [L2 (Q)]M, defined
by

Rid= [ [fvatf + W) a  vee i@ (4.12)

where ¢} (c) = 1(c) — u € H. The function ¢;(c) is determined by ¢3(c) € H;ﬂA (Q) and

M
/gvgsg(c) . VEédr = / (f +V-eVup + Zqici> Edr V¢ e HYQ). (4.13)
@ @ i=1

Note by (4.11) that sup, ., ~ 0, .o [[f + V- eVu|[12) < co. Thus by Corollary 3.1, for
ZLALIZA A2 A
each k > 1, there exists a unique dp = (dp.y, ..., dp ) € [LT(Q2) N H'(Q)]M such that

FMdM = min  F}d, 4.14
v 1di] e k1] (4.14)
sup [y il e < o0, i=1,..., M, (4.15)
E>1,0 >0 Ao >AL0
0<6; <dp;(x)<b ae inQ i=1,....M, Vk>1, (4.16)

where ¢; > 0 and 65 > 0 are positive constants independent of & and A\ = (A1, A) with A\ > A§°)
and \y > )\éo)' It follows from the definition of F}* (cf. (4.12)) and G (cf. (4.7)), and (4.10) that

ay < Gyldy, up] = e[LH;%IS%)}M Gale,ur] < Gilep,up] < A+ 1 VEk > 1. (4.17)
celiy
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Step 4. We show that, up to a subsequence, the new energy-minimizing sequence {(dy, u})}
converges weakly to some limit that is in fact a minimizer of Gy over [L% (Q)]M x H.

By the definition of 1(d) (cf. (4.6)), the uniform bound (4.15) and (4.11), and the regularity
theory (cf. Theorem 8.12 in [8]), we have

sup [ (dp) || ) < oo (4.18)

k2120220 o>l

By (4.7) and (4.12), F}[d}] < Gi[d},u}]. This and (4.17), together with the fact that W is
bounded below, lead to

sup / E|V¢(d£) — Vup* de < oo.
Q

F A0 a0 Ja 2

The above two inequalities imply that SUD; 51 3,520 Ayl |Vug||r2(q) < oo. This, together with
(4.11) and Friedrichs’ inequality [22], implies that

sup [ up] ) < oo (4.19)
k>1, 00 >A 0 Ap>A

It follows from the bounds (4.11), (4.15), (4.18) and (4.19) that the following hold true:
(1) There exists dy = (dx1,...,dan) € [L2(Q) N HY(Q)]M such that, up to a subsequence,
dy — dy weakly in [H1(Q)]M, strongly in [L?(2)], and a.e. in 2 as k — oo.
(2) There exist uy € H'(Q) and hy € L*(Q) such that, up to a subsequence, u} — uy weakly
in H'(Q), strongly in L*(Q) and L?(99), a.e. in Q as k — oo, and V - eVu; — hy weakly
in L*(2). For any £ € C°(Q), we have

/hkgd:r;: lim [ (V-eVup)édr = lim — [ eVuy - VEdr = —/5VUA-V§d:c.
Q k—oo Q k—o0 Q Q

Thus, hy = V - eVu,, and further uy, € H.
(3) There exists ¥y € H%(Q) such that, up to a subsequence, ¥(d}) — 1\ weakly in H?(Q),
strongly in H'(Q) and L%(09), and a.e. in  as k — oo. By the definition of 1 (c) for any
¢ € [LA(Q)]M (cf. (4.6)) and the regularity theory, we have 1y = 4(dy) € H, () N H*(Q).
In particular, ¢, € H.
Consequently, it follows from the definition of G (cf. (4.7)) and Fatou’s lemma that

oy = lim Gi[dy, uy]

z/ﬂ[gww—kumdg] dx+)\1/

(V . €VU)\)2 dz + )\2/ (U)\>2 dsS
Q

o0

= G,[dy, w)]
> Q).

Hence, (dy,u,) is a minimizer of G over [L2(Q)]M x H and (cx, ¢y) := (dy, ¥(dy) — uy) is a
minimizer of Gy over [L3 (Q)]" x H. By (4.15) and (4.16), ¢, € [L2(Q) N H(Q)]M and it
satisfies the desired boundedness.
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Step 5. We show the uniqueness of the minimizer. Suppose (é,dy) € [L2 (M x H is
another minimizer of Gy. Define (¢, ¢)) = ((éx, x) + (ex, d2))/2 € [L2(Q)]™ x H. Since G, is
convex, we have ay = G,\[é,\,qg,\] = Gilea, 00] = G,\[é)\,gg,\]. By the convexity of W and direct
calculations, we obtain

0 = G,[éy, @A] - %GA[CM o] — %GA[@” ﬁgx]

A % 1 1
_ /Q §|V¢,\ B Vcb,\|2 do +/Q [W <c,\ —;— CA) . 5I/V(é/\) — §W(ck)} dx

A L e - 2
- = [V EVOA+ Y Gitri— V- eVhr— > Qic)\,i] dx
)

4 ’ ,
=1 i=1
A2

T [ 1ox—oads
9]

<0.

Therefore, we have

/ §|V<£A — Ve |Pdz = / {W (CA ;L ‘“) - %W(ék) - %W(CA)] dr = [ |oy — ¢n|2dS = 0.
Q Q o0

The first and third equation lead to ngS,\ = ¢, a.e. in . Applying the argument in the proof of
Theorem 3.1, we can infer from the second part being zero that ¢\, = ¢y a.e. in 2. Thus the
minimizer of GG is unique. O

Theorem 4.2. Let 2, €, f, and g be the same as in Theorem 4.1. Let Ny = (Mg, Aok) with
Mg >0 and Ao, >0 (E=1,2,...) and assume A1y +00 and Aoy / +00. For each k > 1, we
denote Gy = G, the functional defined in (4.1), and (cx, ¢r) = (C»,, r,), the corresponding
minimizer of Gy, over [L2(Q)|™ x H as given in Theorem 4.1. Let ¢ € [LA ()M C Y. be
the unique minimizer of E - Y, — RU {400} and ¢ € H,; () N H*(Q) be the solution to the
corresponding PBE (3.24) as given in Theorem 3.1. Then,

Gilew, o] = i Gile, ¢ — min E[c] = E[¢ k — 0o, 4.20
dowod = omin | Giled < min Bl =Bl ask—oo (420
e — ¢ i [LHQM and ¢p—© in H ask — . (4.21)

Proof. Tt suffices to show that any subsequence of { A}, not relabeled, has a further subsequence,
again not relabeled, for which the convergence in (4.20) and (4.21) hold true. We divide our
proof into three steps. First, we prove the energy convergence (4.20). Then, we prove the
convergence ¢, — ¢ in [L*(Q)]M and ¢), — ¢ in HY(Q). Finally, we prove (4.21).

Step 1. We first note that the sequence {Gy[ck, ¢r]}72; is monotonically increasing. We also
note that ¢ and ¢ are related by V - Vi) = —(f + SV @) ae Q; cf. (3.4), (3.22), and (3.24).
Thus, by the definition of G\ (cf. (4.1)) and F (cf. (3.2)), and Lemma 3.2, we have

Grlce, du] < Grle ] = Fle] = E[e). (4.22)
Consequently, the sequence {Gy[ck, ¢}, converges. Moreover, writing ¢ = (¢, .., Cen),
we have
up [Vl 2@y < 00, (4.23)
k>1
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sup/ W(eg) dr < oo, (4.24)
Q

k>1

M
V- -eVor+ f+ Z QiCri

=1

—0 ask— oo, (4.25)
L2(Q)
ok — gll200) — 0 as k — oo. (4.26)

By (4.23), (4.26), and Friedrichs’ inequality, we have supys; ||¢x||n1(@) < oo. Thus, by the
compact embedding H'(Q2) — L?(Q) and H'(Q) — L?*(0Q) [1, 7, 8, 19], there exists ¢, €
H ;(Q), such that, passing to a further subsequence if necessary, ¢, — ¢oo in H(Q), dr — doo
in L*(Q), and ¢p — ¢oo a.e. Q. It follows from (4.24) that, up to a further subsequence, ¢, —
Coo = (Coo1s - -+ Coonr) I [LH(Q)M for some co € [L2(Q)]M and

/ Coo,i 108 Cop i dr < lim inf/ ckilog e dx, 1=1,..., M, (4.27)
Q Q

k—o00

cf. Lemma 3.3 in [14]. Consequently,

/W(coo) dr < liminf/W(ck) dx. (4.28)
Q Q

k—o0

Since for any k£ > 1 and any £ € H}(Q) N L>(Q),

M M
/ (V-&V¢k + f+ Z%‘%,i) Edr = —/ eV, - V§dx—|—/ <f+ Z%’Ck,z) Edx,
Q i=1 Q Q i=1
we have by taking k — oo and using (4.25) and the weak convergence ¢ — ¢o, in H'(Q) that
/ Voo - Vidr = / P d, VE € Hy(Q) N L™(9Q), (4.29)
Q Q

where po, = f 4 pless) = f+ oM, Gicooi € LM(Q). Moreover,

sup | fQ Poo€ dx| _ w | fQ eV - VE dx|

0£E€HS ()NL> () ||§||H1(Q) 0£E€HS (DNL> () ||f||H1(Q)

S Hquboo”LQ(Q) < Q.

Therefore, po, € X and thus c, € Y.

Recall that ¢y € H, () is given by (3.11). It then follows from (4.29) that ¢os = ¢+ Lep(Cso).
Now, define Gy to be the same as G, in (4.1), with the penalty terms excluded by setting
A = Ay = 0. By Lemma 3.2, we have Go[coo, doo] = F[coo] = F[coo]. Therefore, it follows from
various convergence of ¢, to ¢, the weak convergence ¢y — ¢ in [L2 ()], (4.28), and (4.22)
that

E[e] < Eles] = Goco; foo] < lim inf Golcr, ¢
< lilgn inf Gy [cx, ] < limsup Gicx, o] < Eld], (4.30)

k—oo

leading to (4.20).
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Step 2. Tt follows from (4.30) and the uniqueness of a minimizer of E over Y, that ce = ¢.
Therefore, ¢, — ¢ in [LY(Q)]M as k — oco. Additionally, by the assumption on ¢ and (4.29),
both ¢ and ¢ are the solutions to (3.4) with (¢, ¢) replaced by (coo, ¢oo) and (&, 1), respectively.
Since o = ¢, we get that ¢o = 1) € H;(Q)NH?*(Q) and that ¢ — o weakly in H(€2), strongly
in L*(9), and a.e. in .

Now, since Gylcx, dx] — E[¢] = F[¢] and {Gyck, d] 122, is an increasing sequence, we have
0> Giler, ¢x] — F[¢]

= [ 5 (1o = 190R) de+ [ (e - w(@)) ds

Q

M 2
+ >\1k/ (V -eVaor + f+ Z qick,i) dx + )\Zk:/ (qbk — g)2 dS
Q i1 o9

We have liminfy_,oo Cy > 0 and liminfy_, Dy > 0. Since ¢y, — ¢ in HY(Q) weakly, we have

. . 1 . E 2 T2
liminf A, = h&g}lf/g 5 <|V¢k| V| )dx

k—o00

= liminf {/Q §|V(gbk — )P dx + /QSV(gbk, — ) -V dx}

k—o0

- liminf/ g\v@sk — )P dz > 0.
Q

k—o0
By (4.28), we obtain liminfy_,., Bx > 0. Combining these results, we have
0 > liminf(Ag + By, + C + Dy) > liminf Ag + lim inf By, + lim inf Cy, + lim inf Dy, > 0,
k—o0 k—oo k—o0 k—o0 k—o0

hence we have

liminf A; = liminf B;, = liminf C}, = liminf D;, = 0.
k—o00 k—o00 k—o00 k—o0

Passing to a further subsequence if necessary, we have limy_,o, A; = 0 and limy_,o, By, = 0. This
implies that as k — oo,

/Q%|V(¢k—1ﬁ)|2dx—>0 and /QW(ck)dx—>/QW(é)dx.

Thus ¢ — ¢ in H'(Q) strongly. Since ¢ — ¢ in [L*(Q)]M, we have by (4.27) and a result in
[4] (Lemma 2.5 and the proof of Theorem 2.7) that ¢ — ¢ in [L'(2)] strongly.

Step 3. Since A\ — +oo and Mgy — +00 as k — oo, there exists an integer K > 1
such that Ay > 1 and Ay, > 1 for any k£ > K. It follows from Theorem 4.1 applied to the
sequence (¢, ¢p) (k = K 4+ 1,K +2,...) that there exist ©; > 0 and ©, > 0 such that
0<6 < cri(z) < O, a.e. O (1t =1,...,M) for all £ > K. Consequently, since ¢, — ¢ in
[LY ()M strongly, for i = 1,..., M, we have

/(ck,i - éi)2 dr < (@2 + ég)/ lcki — Cilde — 0 as k — oo,
Q Q

where 65 is the upper bound for & cf. (3.26). Hence ¢ — ¢ in [L?(Q)]M strongly.

Finally, by (4.25), the strong convergence ¢ — ¢ in [L*(Q)]M as k — oo, and the fact that
(3.4) holds true with (c, ¢) replaced by (¢,v), we can infer that V - eV, — V - eV in L2(Q)
and thus A¢y, — At in L2(Q) as k — co. This leads to ¢y — 1 in H. O
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