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Abstract

The Legendre-transformed Poisson–Boltzmann (LTPB) electrostatic energy functional of elec-
tric displacements is a convex functional with which the principle of energy minimization can be
applied to determine the equilibrium electrostatics. Recently, such a new formulation of continuum
electrostatics has been used in several theoretical studies of charged systems. This work presents
a systematic numerical analysis of the LTPB electrostatics. Instead of solving the Euler–Lagrange
equation of the functional, we use an optimization method to minimize the functional after a
finite-difference discretization and numerical integration. Application of the LTPB formulation to
continuum molecular modeling results a constrained variational problem with an interface, the di-
electric boundary, separating an underlying system region into two subregions of different dielectric
permittivities. We construct approximate, penalized energy functionals, and prove the convergence
of the minimizers and minimum values of such functionals. Algorithms of numerical optimization
of the penalized functional are designed and implemented, and numerical tests are given to show
the convergence. Finally, we develop numerical methods for minimizing a total energy of dielec-
tric boundary consisting of both surface and electrostatic energy, and compare the LTPB and the
classical Poisson–Boltzmann formulations of electrostatics. We present extensive numerical tests
for a model spherical system to show that for a wide range of numerical parameters the LTPB
formulation has advantages in terms of numerical accuracy and computational efficiency.

Key words and phrases: Poisson–Boltzmann theory, Legendre transform, penalty method, nu-
merical optimization, convergence.

1 Introduction

The classical Poisson–Boltzmann (PB) theory [1, 8, 28] is a continuum theory for electrostatics of
an ionic solution. It has been widely applied to biological physics, colloid science, and chemical
engineering. In the PB theory, the electrostatic potential φ : Ω → R is determined by the nonlinear
PB equation

∇ · ε∇φ−B′(φ) = −f in Ω, (1.1)

together with some boundary conditions. Here, Ω ⊆ R3 is the region occupied by the ionic solution,
ε : Ω→ (0,∞) is the dielectric coefficient, B : R→ R is a given function with −B′(φ) being the ionic
charge density, and f : Ω→ R is a given function describing a fixed charge density. A typical example
of the function B is, after non-dimensionalization, B(s) = cosh(s)−1 for a two-species 1:1 ionic system
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(each ion carries a +1 elementary charge in one of the species while −1 in the other). Another example
is B(s) = s2/2 with which (1.1) becomes the linearized PB equation. In general, the PB equation (1.1)
is the Euler–Lagrange equation of the classical PB electrostatic energy functional [1,4,8,11,12,14,25,27]

I[φ] =

∫
Ω

[
−ε

2
|∇φ|2 + fφ−B(φ)

]
dx. (1.2)

This functional is concave and can be maximized to yield the equilibrium electrostatic potential and
energy. We refer to [4, 6] for discussions on the formulation of the electrostatic energy that leads to
the maximization instead of minimization of the functional for equilibrium electrostatics. (Strictly
speaking, I[φ] is an approximation of the electrostatic free energy as the term B(φ) includes the ionic
entropy [4,14]. Since we only consider an underlying system with a fixed temperature, we will use the
word “energy” instead of “free energy” for simplicity.)

In recent years, a Legendre-transformed Poisson–Boltzmann (LTPB) electrostatic energy functional
has been constructed and used in theoretical studies of charged systems [3,6,21–23]. This is a functional
of electric displacements D : Ω→ R3, given by

J [D] =

∫
Ω

[
1

2ε
|D|2 +B∗(f −∇ ·D)

]
dx+

∫
∂Ω
gD · ndS, (1.3)

where B∗ is the Legendre transform of the function B and g : ∂Ω → R is a given function that
corresponds to the Dirichlet boundary condition φ = g on ∂Ω for the classical PB equation (1.1). We
recall that the Legendre transform h∗ : R → R ∪ {+∞} for a given function h : R → R is defined by
h∗(ξ) = sups∈R [sξ − h(s)] for all ξ ∈ R [26, 34]. If h is smooth and strictly convex, and ξ is in the
range of h′, then h∗(ξ) = sξ − h(s) and h∗′(ξ) = s, where s is uniquely determined by h′(s) = ξ.

The key property of the new, LTPB functional (1.3) is that it is strictly convex. The minimization
of the functional determines the equilibrium electric displacement and the minimum value of the
energy, consistent with the general principle of energy minimization. Moreover, the LTPB functional
(1.3) can be regarded as dual to the classical PB functional (1.2). The dual variable, the electric
displacement D, and the primary variable, the electrostatic potential φ, are related by D = −ε∇φ. In
fact, Ciotti and Li [6] have obtained the duality of the LTPB and PB formulations: I[φ] ≤ J [D] for
any admissible φ and D; and there exist a unique maximizer φm of I and a unique minimizer Dm of
J , related by Dm = −ε∇φm, and J [Dm] = I[φm].

Ciotti and Li [6] also propose to apply the LTPB framework to the continuum modeling of solvation
of charged molecules (e.g., proteins) in water, where the region Ω is separated by an interface Γ, called
a dielectric boundary, into the molecular region Ω−, interior of Γ, and the water region Ω+, exterior
of Γ [2, 4, 8, 9, 14,28,31,32]. Specifically, they construct the LTPB electrostatic energy functional

JΓ[D] =

∫
Ω

[
1

2εΓ
|D|2 + χ+B

∗(f −∇ ·D)

]
dx+

∫
∂Ω
gD · ndS, (1.4)

Here, εΓ : Ω → R is the dielectric coefficient defined via the dielectric boundary Γ by εΓ(x) = ε− if
x ∈ Ω− and εΓ(x) = ε+ if x ∈ Ω+, where ε− and ε+ are two distinct positive constants, and χ+ is the
characteristic function of Ω+. It is proved in [6] that the minimization of this LTPB functional over
all the electric displacements D constrained by ∇ ·D = f in Ω− is equivalent (in terms of duality) to
the maximization of the classical PB electrostatic energy functional

IΓ[φ] =

∫
Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ)

]
dx, (1.5)

among all the electrostatic potentials φ satisfying the boundary condition φ = g on ∂Ω.
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In a variational approach to the continuum modeling of the solvation of charged molecules, one
minimizes a total energy that includes the electrostatic and other energy terms [4, 9, 14, 31, 32]. In a
simple setting, the total energy is

G[Γ] = γ0Area (Γ) + Eele[Γ], (1.6)

where γ0 > 0 is the constant surface tension and Eele[Γ] is the electrostatic energy, given by

Eele[Γ] = max
φ=g on Ω

IΓ[φ] = min
∇·D=f in Ω−

JΓ[D]. (1.7)

Numerical minimization of the functional G[Γ] can be done by a gradient descent iteration that updates
the boundary Γk in the kth step. For the LTPB formulation, this is a min-min iteration: minimizing
JΓk

[D] over D and then minimizing G[Γ] with Γk as an initial guess. The PB formulation leads to
a max-min process: maximizing IΓk

[φ] over φ and then minimizing G[Γ] with Γk as an initial guess.
Whether the min-min algorithm is more stable and efficient than the max-min algorithm for large-scale
computations poses a question of much practical interest.

In this work, we present a systematic numerical analysis of the LTPB electrostatics, particularly
applied to the dielectric boundary problem. There are many different numerical schemes we can use
to solve our underlying variational problems. Instead of testing different methods, we focus on the
development of efficient approaches for the numerical minimization of the LTPB functional that may
be applied to large-scale molecular simulations. We also compare the two LTPB and PB formulations
in terms of numerical computations.

Our main results are the following:
(1) We develop and implement a numerical method to minimize the LTPB functional (1.3) without

interface. This method consists of the discretization of the functional by a finite-difference scheme
and the composite trapezoidal quadrature rule, and the optimization of the resulting function by
a gradient descent method. We present numerical tests to show the convergence of our method.

(2) To minimize numerically the functional JΓ defined in (1.4) among all the displacements D con-
strained by ∇ ·D = f in Ω−, we propose a penalty method: minimize the penalized functional

JΓ,µ[D] =

∫
Ω

[
1

2εΓ
|D|2 + χ+B

∗(f −∇ ·D) +
χ−
2µ
|∇ ·D − f |2

]
dx, (1.8)

without the constraint, where µ > 0 is a penalty parameter and χ− is the characteristic function
of Ω−. We prove that, as µ→ 0, the minimizers and mimimum values of the penalized functionals
JΓ,µ converge to those for the functional JΓ with the constraint. We then discretize the functional
by a finite-difference scheme and a numerical quadrature, and implement a limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method to minimize numerically the resulting convex
function. We report numerical tests to validate the convergence of our method.

(3) We construct a max-min method and a min-min method to minimize numerically the total
energy G[Γ] (1.6), and implement these methods for a radially symmetric system. We present
extensive numerical tests to examine the accuracy, efficiency, and stability of the LTPB and PB
formulations of electrostatics, respectively.

We note that the explicit formula of the Legendre transform B∗ = B∗(ξ) of a given convex function
B = B(s) is generally not available. One can, however, generate a table of values B∗(ξ) for selected
values of ξ ∈ [ξmin, ξmax], where the numbers ξmin and ξmax can be estimated from an underlying
system. Note that, the convex function B = B(s) used in the generalized PB theory for electrostatic
interactions with ionic size effect is only implicitly defined [13, 16, 33]. One can solve a system of
nonlinear algebraic equations to obtain the value of B(s) for s in an interval of the real line and then
calculate B∗(ξ) to generate a table. We also note that, for a general dielectric boundary problem,
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the level-set method can be used to define the boundary, and to minimize a total energy that has the
electrostatic and other parts of the energy; cf. [32]. Along this line, it will be interesting to use the
level-set method to minimize such a total energy of dielectric boundaries and compare the min-min
and max-min algorithms, and hence compare the LTPB and PB formulations in terms of numerical
computations.

The rest of this paper is organized as follows: In section 2, we present the finite-difference dis-
cretization, numerical integration, and the gradient descent method for minimizing the LTPB func-
tional without interface, and the numerical results to show the convergence. In section 3, we study the
LTPB functional for a system with a fixed dielectric boundary. We first present our penalized LTPB
functionals and prove their convergence. We then construct and implement numerical discretization,
integration, and optimization methods, and show such convergence by numerical tests. In section 4,
we present our numerical methods for minimizing the total energy with both the surface and electro-
static energies. We test our methods for a radially symmetric system and present numerical results to
compare the PB and LTPB formulations. In Appendix, we prove some analytic results for the model
radially symmetric system.

2 Numerical Minimization of the LTPB Functional

2.1 A brief review of the theory

Let Ω be a bounded domain in R3 with a Lipschitz-continuous boundary ∂Ω, f ∈ L2(Ω), and g ∈
H1(Ω). Let ε ∈ L∞(Ω) be such that εmin ≤ ε(x) ≤ εmax for all x ∈ Ω, where εmin and εmax are given
positive constants. Let B ∈ C3(R) be a strictly convex function such that it is uniquely minimized at
0, B(0) = 0, and B(±∞) = ∞. Note that the Legendre transform B∗ of B is a strictly convex and
C2-function, minimized at 0 with the minimum value B∗(0) = 0. We consider the maximization of
the classical PB electrostatic free-energy functional I : H1

g (Ω)→ R ∪ {−∞} defined in (1.2), where

H1
g (Ω) :=

{
u ∈ H1(Ω) : u = g on ∂Ω

}
. (2.1)

The following theorem is proved in [15]:

Theorem 2.1 ([15]). The functional I : H1
g (Ω)→ R ∪ {−∞} has a unique maximizer φm. Moreover,

φm ∈ L∞(Ω), and it is the unique weak solution to the boundary-value problem of PB equation (1.1).

We consider the minimization of the Legendre-transformed Poisson–Boltzmann (LTPB) functional
J : H(div,Ω)→ R ∪ {+∞} with J [D] defined in (1.3) and

H(div,Ω) :=
{
D ∈

[
L2(Ω)

]3
: ∇ ·D ∈ L2(Ω)

}
. (2.2)

We recall that H(div,Ω) is a Hilbert space with the inner product

〈D,G〉 =

∫
Ω

[D ·G+ (∇ ·D)(∇ ·G)] dx ∀D,G ∈ H(div,Ω).

If D ∈ H(div,Ω) and n is the unit exterior normal at the boundary ∂Ω, then D · n ∈ L2(∂Ω) [30].
The following theorem, proved in [6], provides the duality for the PB functional I defined in (1.2)

and the LTPB functional J defined in (1.3):

Theorem 2.2 ([6]). We have I[φ] ≤ J [D] for any φ ∈ H1
g (Ω) and any D ∈ H(div,Ω), and

supφ∈H1
g (Ω) I[φ] = infD∈H(div,Ω) J [D]. Moreover, if φm = arg maxφ∈H1

g (Ω) I[φ], then Dm := −ε∇φm ∈
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H(div,Ω) is the unique minimizer of J : H(div,Ω)→ R ∪ {+∞} and the unique weak solution to the
boundary-value problem of the Euler–Lagrange equation for the functional J : H(div,Ω)→ R∪ {+∞}

D

ε
+∇(B∗′(f −∇ ·D)) = 0 in Ω,

B∗′(f −∇ ·D) = g on ∂Ω.

2.2 Numerical methods and tests

We choose Ω = (0, L)3 for some L > 0, and fix ε > 0 to be a constant, f ∈ L2(Ω), and g ∈ H1(Ω). We
fix the convex function B and calculate its Legendre transform B∗. Next, we cover Ω = [0, L]3 with a
uniform finite-difference grid of grid size h = L/N , where N + 1 is the number of grid points in each
of the three coordinate directions. We approximate the values of the vector field D = (D1, D2, D3)
at the grid points labeled by (i, j, k) by (D̂1

i,j,k, D̂
2
i,j,k, D̂

3
i,j,k), where i, j, k = 0, 1, . . . , N. We use the

central differencing scheme to discretize the partial derivatives of all the components of D at all the grid
points, and use the trapezoidal numerical quadrature rule to approximate the integral J [D] as iterated
one-dimensional integrals. As a result, we obtain a 3(N + 1)3-variable convex function Ĵ = Ĵ [D̂] with
D̂ ∈ R3(N+1)3

the vector of components D̂1
i,j,k, D̂

2
i,j,k, and D̂3

i,j,k (i, j, k = 0, 1, . . . , N) in certain order.

The gradient vector ∇Ĵ [D̂] ∈ R3(N+1)3
is calculated.

We use the gradient descent method with line search to minimize the convex function Ĵ = Ĵ [D̂].
This iterative process begins with an initial displacement D̂0 = (D̂1

0, D̂
2
0, D̂

3
0), and is terminated if the

number of iteration reaches a given maximal number kmax or if the `2-norm of the gradient ∇Ĵ at the
current iterate D̂k is smaller than a given tolerance δT. The step length in the line search is controlled
by a shrinking parameter γc.

For our numerical tests, we set ε = 1 and L = 1, and define

φ(x) = x1(1− x1) sin(πx2) sin(πx3) ∀x = (x1, x2, x3) ∈ Ω = (0, 1)3.

We then define f = −ε∆φ + B′(φ) and g = 0 in Ω. Note that, with such f and g, the function φ
is the solution to the PB equation (1.1) with the boundary condition φ = g on ∂Ω, and the vector
field D := −ε∇φ is the unique minimizer of the LTPB functional (1.3) over H(div,Ω). We also set
kmax = 105, δT = 10−7, and γc = 1/2. The grid size is h = 1/N , where the value of N is varied in our
tests. We consider two choices of the convex function B :

(1) B(s) = s2/2. Its Legendre transform is B∗(ξ) = ξ2/2;

(2) B(s) = cosh(s)− 1. Direct calculations lead to B∗(ξ) = 1−
√
ξ2 + 1 + ξ ln

(
ξ +

√
ξ2 + 1

)
.

For a fixed choice of B and an integer N ≥ 1, we compute the numerical value of max I := I[φ]
by the finite difference and numerical quadrature. For D = −ε∇φ, we have by the duality that
I[φ] = J [D] = minH(div,Ω) J. We then use our algorithm described above to numerically minimize the
functional J defined in (1.3). We denote by DN the final numerical minimizer and by min J the final
minimum value. We calculate the L2(Ω)-error, ‖DN −D‖L2(Ω), between DN and the exact minimizer
D = −ε∇φ of J , and the differences between the maximal value max I and the minimum value min J.

Figure 1 shows the log-log plot of the L2-error ‖DN −D‖L2(Ω) vs. the grid size h = 1/N for both
B(s) = s2/2 and B(s) = cosh(s) − 1. We observe that our method converges with the rate O(h1.5).
Figure 2 shows the log-log plot of the absolute value of the energy difference, |min JN −max IN |, vs.
the grid size h = 1/N, where min JN is the numerical minimum value of Ĵ and max IN is the numerical
integration value of I[φ] with the grid size h = 1/N. The convergence rate is observed to be O(h3.3). We
see from our numerical results that our simple discretization, integration, and optimization methods
produce numerical minimizers and minimum values that converge to the exact ones. The convergence
of the energy error also validates the duality as stated in Theorem 2.2.
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Figure 1: Log-log plot (circles) with linear fitting (straight line) of the L2-error ‖DN − D‖L2(Ω) vs.
the grid size h = 1/N for B(s) = s2/2 (left) and B(s) = cosh(s)− 1 (right). Both straight lines have
the slopt 1.5, indicating an O(h1.5) convergence rate.
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Figure 2: Log-log plot (circles) with linear fitting (straight line) of the absolute error |min JN−max IN |
(marked as “Energy difference”) vs. the grid size h = 1/N for B(s) = s2/2 (left) and B(s) = cosh(s)−1
(right). Both straight lines have the slop 3.3, indicating an O(h3.3) convergence rate.

3 A Penalty Method for LTPB Electrostatics with a Dielectric Bound-
ary

3.1 A brief review of the theory

Let Ω ⊂ R3 be a bounded domain with a Lipschitz-continuous boundary. Let Γ be a C2, closed surface
such that Γ ⊂ Ω. Denote Ω− the interior of Γ and Ω+ = Ω \ Ω−. Note that both Ω− and Ω+ are
bounded open sets in R3, and Ω = Ω− ∪ Ω+ ∪ Γ. Let ε− > 0 and ε+ > 0 be the distinct dielectric
constants for Ω− and Ω+, respectively. We define the dielectric coefficient εΓ : Ω→ R by

εΓ(x) =

{
ε− if x ∈ Ω−,

ε+ if x ∈ Ω+.
(3.1)

Let again f ∈ L2(Ω) and g ∈ H1(Ω). We define the set H1
g (Ω) by (2.1) and the functional IΓ :

H1
g (Ω)∪{−∞} by (1.5). This is the classical PB electrostatic energy applied to the molecular solvation

with a continuum solvent [1, 4, 8, 11, 12, 14, 15, 25, 27]. The functional IΓ is strictly concave downward
and its extremization leads to the boundary-value problem of the PB equation{

∇ · εΓ∇φ− χ+B
′(φ) = −f in Ω,

φ = g on ∂Ω.
(3.2)
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Equivalently [20,32], 
ε−∆φ = −f in Ω−,

ε+∆φ−B′(φ) = −f in Ω+,

JφK = JεΓ∇φ · nK = 0 on Γ,

φ = g on ∂Ω.

(3.3)

Here and below, JuK = u|Ω+ − u|Ω− denotes the jump across Γ of a function u : Ω → R from Ω+ to
Ω−, and n denotes the unit normal at Γ pointing from Ω− to Ω+.

The following theorem collects some useful results proved in [7, 14,15,18]:

Theorem 3.1 ([7, 14,15,18]). (1) There exists a unique φΓ = arg maxφ∈H1
g(Ω) IΓ[φ]. Moreover, φΓ ∈

L∞(Ω), and there exists C > 0, independent of Γ, such that ‖φΓ‖H1(Ω) + ‖φΓ‖L∞(Ω) ≤ C.
(2) If ∂Ω is smooth, then the maximizer φΓ satisfies φΓ|Ω− ∈ H2(Ω−) and φΓ|Ω+ ∈ H2(Ω+). More-

over, it is the unique solution to the problem (3.2) and the problem (3.3).

We consider minimizing the LTPB functional JΓ : VΓ → R ∪ {+∞} defined by (1.4), where

VΓ = {D ∈ H(div,Ω) : ∇ ·D = f a.e. Ω−}.

Note that the set VΓ is a convex subset of H(div,Ω) and the functional JΓ is strictly convex. By
formal calculations, we obtain the Euler–Lagrange equation for the minimizer DΓ [6]

∇ ·DΓ = f in Ω−,

DΓ

ε+
+∇

(
B∗′(f −∇ ·DΓ)

)
= 0 in Ω+,

JDΓ · nK = 0 on Γ,

1

ε−
DΓ|Ω− · τ = −∂τ

(
B∗′(f −∇ ·DΓ)|Ω+

)
on Γ,

B∗′(f −∇ ·DΓ) = g on ∂Ω,

(3.4)

where τ is any unit vector tangential to Γ.
The LTPB formulation (i.e., the minimization of JΓ over VΓ) and the classical PB formulation (i.e.,

the maximization of IΓ over H1
g (Ω)) are a pair of dual variational problems. The following theorem,

proved in [6], provides both the week and strong dualities:

Theorem 3.2 ([6]). (1) Weak duality. We have IΓ[φ] ≤ JΓ[D] for all φ ∈ H1
g (Ω) and all D ∈ VΓ.

(2) Strong duality. Let DΓ = −εΓ∇φΓ, where φΓ = arg maxH1
g (Ω)IΓ. Then, DΓ ∈ VΓ and DΓ is the

unique minimizer of JΓ : VΓ → R ∪ {+∞}. Moreover, JΓ[DΓ] = IΓ[φΓ].

3.2 A penalty method and its convergence

Since the Euler–Lagrange equation (3.4) for the minimizer DΓ of the LTPB functional JΓ : VΓ →
R ∪ {+∞} is rather complicated, we propose to numerically minimize the functional JΓ over VΓ. To
treat the constraint ∇ · D = f for all D ∈ VΓ, we propose to use a penalty method: approximate
the functional JΓ by adding a penalty term, and minimize the resulting, penalized functional without
the constraint. Specifically, we define the penalized functional JΓ,µ : H(div,Ω) → R ∪ {+∞} for any
µ > 0, a penalty parameter, by

JΓ,µ[D] = JΓ[D] +
1

2µ

∫
Ω−

(∇ ·D − f)2 dx
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=

∫
Ω

[
1

2εΓ
|D|2 + χ+B

∗(f −∇ ·D) +
χ−
2µ

(∇ ·D − f)2

]
dx+

∫
∂Ω
gD · ndS, (3.5)

where χ+ and χ− are the characteristic functions of Ω+ and Ω−, respectively. Clearly,

JΓ,µ1 [D] ≥ JΓ,µ2 [D] ∀D ∈ H1(div,Ω), if 0 < µ1 < µ2. (3.6)

To prove the convergence of the penalized LTPB electrostatics in the limit µ→ 0 and to compare
different formulations, we define the corresponding, penalized PB functional IΓ,µ : H1

g (Ω)→ R∪{−∞}
of electrostatic potentials by

IΓ,µ[φ] = IΓ[φ]− µ

2

∫
Ω−

φ2 dx

=

∫
Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ)− χ−µ

2
φ2
]
dx ∀φ ∈ H1

g (Ω). (3.7)

We note that the Legendre transform of the function s 7→ µs2/2 is ξ 7→ ξ2/(2µ).
The following theorem shows the convergence of the minimizers and minimum values of the penal-

ized functionals IΓ,µ to those of the non-penalized functional IΓ:

Theorem 3.3. (1) Let µ > 0. There exists a unique φΓ,µ = arg maxφ∈H1
g(Ω) IΓ,µ[φ]. Moreover, φΓ,µ ∈

L∞(Ω), and it is the unique weak solution in H1
g (Ω) to the Euler–Lagrange equation

−∇ · εΓ∇φΓ,µ + χ+B
′(φΓ,µ) + µχ−φΓ,µ = f in Ω.

(2) If φΓ = arg maxφ∈H1
g(Ω) IΓ[φ], then φΓ,µ → φΓ in H1(Ω) and IΓ,µ[φΓ,µ]→ IΓ[φΓ] as µ→ 0.

Proof. (1) This is the same as the proof for the non-penalized functional (µ = 0). The existence of a
minimizer is obtained by the direct method in the calculus of variations. The regularity φΓ,µ ∈ L∞(Ω)
follows from a comparison argument. This regularity is needed to obtain the Euler–Lagrange equation
by the definition. See more details in [15].

(2) It suffices to show that for any sequence µk ↘ 0, there is a subsequence, not relabelled, such
that φΓ,µk → φΓ in H1(Ω) and IΓ,µk [φΓ,µk ]→ IΓ[φΓ] as k →∞.

First, we need some bound for all the maximizers φΓ,µ (µ > 0). Let ĝ ∈ H1
g (Ω) be such that ĝ = 0

in Ω−. We have for any µ > 0 that IΓ,µ[φΓ,µ] = maxφ∈H1
g (Ω) IΓ,µ[φ] ≥ IΓ,µ[ĝ] = IΓ[ĝ] > −∞. It then

follows from the definition of IΓ,µ and Poincaré’s inequality that

sup
µ>0
‖φΓ,µ‖H1(Ω) <∞. (3.8)

Now for any sequence µk ↘ 0, by the above bound, there exists a subsequence of {φΓ,µk}, not relabelled,

and some φ̂Γ ∈ H1(Ω) such that φΓ,µk ⇀ φ̂Γ in H1(Ω). But H1
g (Ω) is convex and closed, and hence

weakly closed in H1(Ω). Thus, φ̂Γ ∈ H1
g (Ω). The convexity of −IΓ leads to

lim sup
k→∞

IΓ[φΓ,µk ] ≤ IΓ[φ̂Γ]. (3.9)

We claim that φ̂Γ = φΓ, which is the maximizer of IΓ over H1
g (Ω). In fact, for each k ≥ 1, IΓ,µk [φΓ] ≤

IΓ,µk [φΓ,µk ] ≤ IΓ[φΓ,µk ]. This and (3.9) imply that

IΓ[φΓ] = lim
k→∞

IΓ,µk [φΓ] ≤ lim inf
k→∞

IΓ,µk [φΓ,µk ] ≤ lim inf
k→∞

IΓ[φΓ,µk ]

≤ lim sup
k→∞

IΓ[φΓ,µk ] ≤ IΓ[φ̂Γ] ≤ IΓ[φΓ]. (3.10)
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Thus, IΓ[φ̂Γ] = IΓ[φΓ], and φ̂Γ = φΓ by the uniqueness of the maximizer of IΓ. The combination of
(3.9) and (3.10) now implies IΓ,µk [φΓ,µk ]→ IΓ[φΓ] as k →∞.

We prove finally the strong convergence φΓ,µ → φΓ in H1(Ω). Denote for each k ≥ 1

ak =

∫
Ω

[εΓ

2
|∇φΓ,µk |

2 − εΓ

2
|∇φΓ|2

]
dx and bk =

∫
Ω+

[B(φΓ,µk)−B(φΓ)] dx.

Passing to a further subsequence if necessary, we have by the weak convergence φΓ,µk ⇀ φΓ in H1(Ω)
that φΓ,µk → φΓ in L2(Ω) and φΓ,µk → φΓ a.e. in Ω. These, together with the energy convergence
IΓ,µk [φΓ,µk ] → IΓ[φΓ] as k → ∞ and the bound (3.8), imply that ak + bk → 0 as k → ∞. But
lim infk→∞ ak ≥ 0 as φΓ,µk ⇀ φΓ in H1(Ω) and lim infk→∞ bk ≥ 0 by Fatou’s lemma. Therefore,

0 = lim
k→∞

(ak + bk) ≥ lim inf
k→∞

ak + lim inf
k→∞

bk ≥ 0.

Hence lim infk→∞ ak = 0. Passing to a further subsequence if necessary and without relabelling, we
have ak → 0 as k → ∞. This and the weak convergence φΓ,µk ⇀ φΓ in H1(Ω), together with the
identity

‖∇φΓ,µ −∇φΓ‖2 = ‖∇φΓ,µ‖2 − ‖∇φΓ‖2 −
∫

Ω
2∇φΓ · ∇(φΓ,µ − φΓ) dx,

implty that ∇φΓ,µk → ∇φΓ in L2(Ω) and consequently that φΓ,µ → φΓ in H1(Ω).

The following theorem provides the duality properties for the penalized functionals IΓ,µ and JΓ,µ,
its proof is similar to that of of Theorem 3.2 (cf. [6]), and is therefore omitted:

Theorem 3.4. Let µ > 0.
(1) Weak duality. We have IΓ,µ[φ] ≤ JΓ,µ[D] for any φ ∈ H1

g (Ω) and any D ∈ H(div,Ω).
(2) Strong duality. Let φΓ,µ = arg maxH1

g(Ω) IΓ,µ. Then, DΓ,µ := −εΓ∇φΓ,µ ∈ H(div,Ω) and DΓ,µ is

the unique minimizer of JΓ,µ : H(div,Ω)→ R ∪ {+∞}. Moreover, JΓ,µ[DΓ,µ] = IΓ,µ [φΓ,µ] .

The above two theorems, together with (3.6), imply immediately the following:

Theorem 3.5. We have DΓ,µ → DΓ in H(div,Ω). Moreover, as µ > 0 decreases to 0, the minimum
value JΓ,µ[DΓ,µ] = minD∈H1(div,Ω) JΓ,µ[D] increases and converges to JΓ[DΓ] = minD∈VΓ

JΓ[D].

3.3 Numerical methods and tests

We choose Ω = (−L,L)3 for some L > 0 and cover Ω = [−L,L]3 with a uniform finite-difference grid of
grid size h = 2L/N , where N+1 is the number of grid points in each of the three coordinate directions.
We approximate the values of a scalar function φ and a vector-valued function D = (D1, D2, D3) at the
grid points labeled by (i, j, k) by φ̂i,j,k and (D̂1

i,j,k, D̂
2
i,j,k, D̂

3
i,j,k), respectively, where i, j, k = 0, 1, . . . , N.

We fix the parameters ε− and ε+, the functions f ∈ L2(Ω) and g ∈ H1(Ω), and a penalty parameter
µ > 0. As before, we consider again B(s) = s2/2 and B(s) = cosh(s)− 1.

We use the central differencing scheme to discretize partial derivatives of functions at all the
grid points and the trapezoidal numerical quadrature rule to approximate the integrals IΓ[φ], IΓ,µ[φ],
and JΓ,µ[D] as iterated one-dimensional integrals, respectively. After the discretization and numerical

integration, we obtain the corresponding concave functions ÎΓ and ÎΓ,µ of φ̂ ∈ R(N−1)3
with components

φ̂i,j,k (for all i, j, k 6= 0 or N by the boundary condition φ = g on ∂Ω), and a convex function ĴΓ,µ

of D̂ ∈ R3(N+1)3
with components (D̂1

i,j,k, D̂
2
i,j,k, D̂

3
i,j,k) for all i, j, k. The gradient vectors ∇ÎΓ, ∇ÎΓ,µ,

and ∇ĴΓ,µ are also calculated.
Since molecular modeling often leads to large-scale simulations, we use the efficient, limited-memory

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a quasi-Newton optimization algorithm [10,
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19, 24], to minimize the convex functions −ÎΓ and ĴΓ,µ. The optimization iteration is terminated if

the number of iteration reaches a given maximal number or if the `2-norm of the gradient ∇ÎΓ, ∇ÎΓ,µ,

or ∇ĴΓ,µ is smaller than a given torelance.
For numerical tests, we set L = 1, Ω = (−1, 1)3, Γ = {x ∈ R3 : |x| =

√
2/2}, ε− = 1, ε+ = 80,

f = 1, and g = 0. We first maximize numerically the functional IΓ : H1
g (Ω) → R ∪ {−∞} defined

by (1.5) with a very fine grid to obtain a numerical maximizer φexact ∈ H1
g (Ω). We denote Dexact =

−εΓ∇φexact, and use it as the “exact” solution for testing our methods. We then choose several
values of N , with N + 1 the number of grid size along one coordinate direction, and several values of
the penalty parameter µ. For each pair of chosen N and µ, we minimize numerically the functional
JΓ,µ : H(div,Ω)→ R ∪ {∞}, defined in (1.4), to obtain a numerical minimizer Dµ,N ∈ H(div,Ω) and
an approximation, Jmin,µ,N := JΓ,µ[Dµ,N ], of the minimum value of the functional JΓ,µ over H(div,Ω).
To test how the original constraint ∇ ·D = f in Ω− = {x ∈ Ω : |x| < R}, we define the penalty error

PE(µ,N) :=

∫
Ω−

|∇ ·Dµ,N − f |2dx. (3.11)

In Figure 3, we plot the L2 relative error ‖Dµ,N − Dexact‖L2(Ω)/‖Dexact‖L2(Ω) vs. N with N + 1
the number of grid points in one direction for several values of the penalty parameter µ and for the
function B(s) = s2/2 (Figure 3, left) and B(s) = cosh(s)− 1 (Figure 3, right). We see that in general
the approximation Dµ,N to Dexact is better for smaller µ > 0 and large N . Moreover, for a fixed N ,
the relative error decreases as the penalty µ decreases. These results indicate the convergence of our
penalty method and numerical algorithm.
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Figure 3: The L2 relative error ‖Dµ,N −Dexact‖L2(Ω)/‖Dexact‖L2(Ω) (marked as “Relative Error”) vs.
N with N + 1 the number of grid points in one coordinate direction. for B(s) = s2/2 (left) and
B(s) = cosh(s)− 1 (right) for several µ-values.

In Figure 4, we show the log-log plot of the penalty error PE(µ,N) defined in (3.11) vs. 1/(2µ)
with µ the penalty parameter for several values of N and for both B(s) = s2/2 and B(s) = cosh(s)−1.
The slop of the lines are estimated to be close to −2. This indicates that (1/µ)PE(µ,N) = O(µ), and
hence particularly,

lim
µ→0+

1

2µ

∫
Ω−

|∇ ·DΓ,µ − f |2 dx = 0,

where DΓ,µ = arg minH(div,Ω) JΓ,µ. This agrees with our convergence result that the minimum energy
of JΓ,µ over H(div,Ω) converges to that of JΓ over VT as µ→ 0; cf. Theorem 3.5.
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Figure 4: The log-log plot of the penalty error, defined in (3.11), vs. 1/(2µ) with µ the penalty
parameter for several values of N for B(s) = s2/2 (left) and B(s) = cosh(s)− 1 (right). The lines for
different values of N almost overlap. The slope of these lines is close to −2.

4 Numerical Relaxation of a Dielectric Boundary and Comparison
of the LTPB and PB Electrostatics

4.1 Gradient descent and boundary force

With the set up as in section 3, we now consider the minimization of the energy functional G[Γ] of a
boundary Γ defined in (1.6) that consists of both the surface energy and the electrostatic energy (1.7).
The gradient descent iteration is a generic algorithm for minimizing the functional G[Γ]. Once Γk is
given, the new boundary Γk+1 is formally obtained by

Γk+1 = Γk − αkδΓG[Γk],

i.e., a point xk ∈ Γk is moved to xk+1 ∈ Γk+1 by xk+1 = xk − αkδΓG[Γk](xk). Here, αk > 0 is the
step-size and δΓG[Γ] : Γ → R is the first variation of G[Γ] with respect to the perturbation of Γ. We
shall call −δΓG[Γ] the boundary force associated to the total energy G[Γ].

The variation of the first part of the energy G[Γ], the surface energy γ0Area (Γ), is −2γ0H, where
H is the mean curvature. The variation of the electrostatic energy Eele[Γ] (1.7) is given by [15,18]

δΓEele[Γ] =
1

2

(
1

ε−
− 1

ε+

)
|εΓ∇φΓ · n|2 +

1

2
(ε+ − ε−) |(I − n⊗ n)∇φΓ|2 +B(φΓ) on Γ, (4.1)

where φΓ ∈ H1
g (Ω) is the unique maximizer of IΓ over H1

g (Ω) and I is the 3× 3 identity matrix. It is
noted that the force −δΓEele[Γ] always points from the lower to higher dielectric region; cf. [15]. By
the duality, DΓ = −εΓ∇φΓ is the unique minimizer of JΓ over VΓ, cf. Theorem 3.1 and Theorem 3.2.
We have φΓ = B∗′(f −∇ ·DΓ) in Ω+. This follows from the interface version of the Euler–Lagrange
equation (3.3) for φΓ on Ω+, B

′(φΓ) = f −∇ ·DΓ = f + ε+∆φΓ in Ω+, together with the property of
the Legendre transform. Therefore, the variation δΓEele[Γ] can be also calculated by DΓ as follows:

δΓEele[Γ] =
1

2

(
1

ε−
− 1

ε+

)
|DΓ · n|2 +

1

2
(ε+ − ε−)

∣∣∣∣(I − n⊗ n)
DΓ

εΓ

∣∣∣∣2
+B

(
B∗′(f −∇ ·DΓ|Ω+)

)
on Γ. (4.2)

With our penalty method described in section 3, the electrostatic energy is approximated by

Eele,µ[Γ] := min
D∈H(div,Ω)

JΓ,µ[D] = max
φ∈H1

g (Ω)
IΓ,µ[φ];
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cf. Theorem 3.3 and Theorem 3.4. Let φΓ,µ ∈ H1
g (Ω) be the unique maximizer of IΓ,µ over H1

g (Ω) and
DΓ,µ = −εΓ∇φΓ,µ ∈ H(div,Ω) the unique minimizer of JΓ,µ over H(div,Ω). By the same argument
for obtaining the formula (4.1) and (4.2), we have

δΓEele,µ[Γ] =
1

2

(
1

ε−
− 1

ε+

)
|εΓ∇φΓ,µ · n|2

+
1

2
(ε+ − ε−) |(I − n⊗ n)∇φΓ,µ|2 +B(φΓ,µ)− µ

2
φ2

Γ,µ on Γ,

δΓEele,µ[Γ] =
1

2

(
1

ε−
− 1

ε+

)
|DΓ,µ · n|2 +

1

2
(ε+ − ε−)

∣∣∣∣(I − n⊗ n)
DΓ,µ

εΓ

∣∣∣∣2
+B

(
B∗′(f −∇ ·DΓ,µ|Ω+)

)
− 1

2µ

(
f −∇ ·DΓ,µ|Ω−

)2
on Γ.

To minimize the total energyG[Γ] (1.6) with the PB electrostatic energy Eele[Γ] = maxφ∈H1
g (Ω) IΓ[φ],

we propose the following max-min algorithm with given Γk and φk:

The max-min algorithm. Given Γk and φk.
• Maximize IΓk

over H1
g (Ω) by an iteration method with φk as the initial guess to obtain an

approximate maximizer φk+1;
• Use (4.1) to calculate δΓEele[Γk] using φk+1 and then calculate δΓG[Γk];
• Choose αk+1 and update Γk+1 = Γk − αk+1δΓG[Γk].

Similarly, to minimize the total energy G[Γ] (1.6) with the LTPB electrostatic energy Eele[Γ] =
minD∈VT JΓ[D], we propose the following min-min algorithm with given Γk and Dk:

The min-min algorithm. Given Γk and Dk.
• Minimize JΓk

over VΓk
by an iteration method with Dk as the initial guess to obtain an approx-

imate minimizer Dk+1;
• Use (4.2) to calculate δΓEele[Γk] using Dk+1 and then calculate δΓG[Γk];
• Choose αk+1 and update Γk+1 = Γk − αk+1δΓG[Γk].

Algorithms for the penalty methods are similar, where we maximize IΓ,µ instead of IΓ over H1
g (Ω) and

minimize JΓ,µ over H(div,Ω) instead of minimizing JΓ over VΓ.
For large-scale simulations, it is desirable to have only a few iterations to get the approximate φk+1

or Dk+1. It is of practical interest to see if the min-min algorithm is more stable than the max-min
algorithm. We will study this issue for a model system.

4.2 A model spherical system

We consider a radially symmetric charged system such as a macroion centered at the origin. In this
case, Ω− = {x ∈ R3 : |x| < R}, Ω+ = {x ∈ R3 : R < |x| < A}, and Γ = {x ∈ R3 : |x| = R}, where
A > 0 and R ∈ (0, A) are given constants. Denote r = |x| for any x ∈ R3. The electrostatic potential
φ is now a radially symmetric function, i.e., a function of r: φ = φ(r). Since the electric displacement
vector field D is proportional to ∇x(φ(r)) = φ′(r)(x/r), we consider D(x) = p(r)(x/r) with p = p(r)
a radially symmetric function. While such a vector filed is not radially symmetric, its Euclidean norm
|D(x)| = |p(r)| and divergence

∇ ·D(x) =
2

r
p(r) + p′(r) =

1

r2
(r2p(r))′ (4.3)

are radially symmetric. So, we shall consider the radially symmetric function p = p(r) instead of the
vector field D(x). In order to get exact solutions (i.e., minimizers of penalized functionals), we consider
the case B(s) = (1/2)s2. Note that B∗(ξ) = (1/2)ξ2.
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We can now convert the functionals (1.5), (1.4), (3.7), and (3.5) in the cartesian coordinate into
the functionals in the spherical coordinate, respectively,

IR[φ] = 4π

∫ A

0

(
−εR

2
|φ′|2 + fφ− χ+

2
φ2
)
r2dr, (4.4)

JR[p] = 4π

∫ A

0

[
1

2εR
p2 +

χ+

2

∣∣∣∣f − (2

r
p+ p′

)∣∣∣∣2
]
r2dr + 4πgp(A)A2. (4.5)

IR,µ[φ] = 4π

∫ A

0

(
−εR

2
|φ′|2 + fφ− χ−µ

2
φ2 − χ+

2
φ2
)
r2dr, (4.6)

JR,µ[p] = 4π

∫ A

0

[
1

2εR
p2 +

χ−
2µ

∣∣∣∣f − (2

r
p+ p′

)∣∣∣∣2 +
χ+

2

∣∣∣∣f − (2

r
p+ p′

)∣∣∣∣2
]
r2dr + 4πgp(A)A2. (4.7)

Here, the dielectric coefficient εR : [0, A] → R is given by εR(r) = ε− if r < R and εR(r) = ε+ if
r > R, f : [0, A]→ R is a smooth function, g ∈ R is a given constant, χ− and χ+ are the characteristic
functions of (0, R) and (R,A), respectively, and µ > 0 is the penalty parameter. Note that the radially
symmetric electrostatic potential φ = φ(r) and the radially symmetric electric displacement p = p(r)
are related by p = −εRφ′.

We denote ω(r) = r2 and define the space of electrostatic potentials to be

H1
ω(0, A) = {φ : (0, A)→ R : weakly differentiable and

∫ A

0
(φ2 + φ′2)r2dr <∞}.

It is a Hilbert space with the inner product and norm

〈φ, ψ〉ω =

∫ A

0
(φψ + φ′ψ′)r2dr and ‖φ‖ω =

√
〈φ, φ〉ω,

respectively. Note that IR[φ] and IR,µ[φ] are finite if φ ∈ H1
ω(0, A). We shall consider the maximization

of the functionals IR[φ] and IR,µ[φ] over the set of admissible electrostatic potentials

X = {φ ∈ H1
ω(0, A) : φ(A) = g}.

If φ ∈ H1
ω(0, A) and 0 < δ < A, then φ ∈ H1(δ, A) and hence φ is absolutely continuous on [δ, A].

Hence, the trace φ(A) is well defined.
We also define the space of functions representing the electric displacements to be

Y =

{
p : (0, A)→ R : weakly differentiable and

∫ A

0
[(r2p)2 + ((r2p)′)2]

1

r2
dr <∞

}
.

This is also a Hilbert space with the inner product and norm

〈p, q〉Y =

∫ A

0

[
(r2p)(r2q) + (r2p)′(r2q)′

] 1

r2
dr and ‖p‖Y =

√
〈p, p〉Y ,

respectively. By expanding the integrand of the integral in the definition of Y , one can see that
Y = H1

ω(0, A) ∩ L2(0, A). Note that JR[p] and JR,µ[p] are finite for each p ∈ Y ; cf. (4.3). Note also
that, if p ∈ Y, then p ∈ H1(δ, A) for any δ ∈ (0, A), and hence the trace p(A) is well defined. We shall
consider the minimization of JR,µ (µ > 0) over the space Y and that of JR over the subset Y0 of Y
defined by

Y0 =

{
p ∈ Y :

2

r
p+ p′ = f in (0, R)

}
.
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The equation in defining Y0 is equivalent to (r2p(r))′ = r2f(r) for 0 < r < R. This is the same as the
constraint ∇ ·D = f in Ω− in the cartesian coordinates for D(r) = p(r)(x/r).

We note that the results of analysis presented in Section 3 are not for the class of radially symmetric
functions, even the regions Ω− and Ω are spheres, and therefore do not apply directly to the spherical
system we discuss here. For completeness, we present those results for our system in the following
theorem, and give a brief proof of this theorem in Appendix:

Theorem 4.1. (1) Denote IR,0 = IR. For each µ ≥ 0, there exists a unique φR,µ ∈ X such that
IR,µ[φR,µ] = maxφ∈X IR,µ[φ]. Moreover, φR,µ ∈ X is the unique solution to

ε−
1

r2
(r2φ′)′ − µφ = −f in (0, R),

ε+
1

r2
(r2φ′)′ − φ = −f in (R,A),

ε−φ
′(R−) = ε+φ

′(R+),

φ(A) = g.

(2) Duality. We have IR[φ] ≤ JR[p] for any φ ∈ X and p ∈ Y0, and IR,µ[φ] ≤ JR,µ[p] for any µ > 0,
φ ∈ X, and p ∈ Y . Moreover, pR := −εRφR ∈ Y0 and pR,µ := −εRφR,µ ∈ Y (µ > 0) are the
unique minimizers of JR over Y0 and JR,µ over Y, respectively.

(3) Convergence. We have ‖φR,µ−φR‖ω → 0, maxφ∈X IR,µ[φ]→ maxφ∈X IR[φ], ‖pR,µ− pR‖Y → 0,
and minp∈Y JR,µ[φ]→ minp∈Y0 JR[p] as µ→ 0.

The total energy G[Γ] defined in (1.6) now converts to the total energy function

G(R) = 4πγ0R
2 + max

φ∈X
IR[φ] = 4πγ0R

2 + min
p∈Y0

JR[p]. (4.8)

The boundary variation of the surface energy γ0Area(Γ) is −2γ0H, where H is the mean curvature.
Therefore, by (4.1) and (4.2), the boundary variation of the total energy G(R) as a functional of the
spherical interface {x ∈ R3 : |x| = R} is given by

δRG(R) =
2γ0

R
+

1

2

(
1

ε−
− 1

ε+

)[
εRφ

′
R(R)

]2
+

1

2
[φR(R)]2

=
2γ0

R
+

1

2

(
1

ε−
− 1

ε+

)
[pR(R)]2 +

1

2

[
f(R)− p′R(R+)− 2

R
pR(R+)

]2

,

where φR ∈ X is the unique maximizer of IR over X and pR = −εRφ′R ∈ Y0 is the unique minimizer
of JR over Y0. Note that the boundary variation δRG differs from the derivative G′(R) by the factor
4πR2; cf. [4].

For µ > 0, the penalized approximation of the total energy is

Gµ(R) = 4πγ0R
2 + max

φ∈X
IR,µ[φ] = 4πγ0R

2 + min
p∈Y

JR,µ[p]. (4.9)

The boundary variation is

δRGµ(R) =
2γ0

R
+

1

2

(
1

ε−
− 1

ε+

)[
εRφ

′
R,µ(R)

]2
+

(1− µ)

2
[φR,µ(R)]2

=
2γ0

R
+

1

2

(
1

ε−
− 1

ε+

)
[pR,µ(R)]2 +

1

2

[
f(R)− p′R,µ(R+)− 2

R
pR,µ(R+)

]2

− 1

2µ

[
f(R)− p′R,µ(R−)− 2

R
pR,µ(R−)

]2

,

where φR,µ ∈ X is the unique maximizer of IR,µ over X and pR,µ = −εRφ′R,µ ∈ Y is the unique
minimizer of JR,µ over Y.
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4.3 Numerical methods and tests

We fix all the parameters and functions: A > 0, R ∈ (0, A), γ0, ε−, ε+, f : [0, A]→ R, g ∈ R, and µ0.
We only consider the case B(s) = s2/2, as we mainly compare the min-min and max-min approaches.
We cover [0, A] with a uniform finite-difference grid of grid size h = A/N with the grid points ri = ih
(i = 0, . . . , N), and denote by φ̂i and p̂i the approximation of φ(ri) and p(ri), respectively. We
discretize the derivatives using the central differencing scheme and approximate integrals using the
trapezoidal rule to obtain a concave function ÎR,µ = ÎR,µ(φ̂0, φ̂1, . . . , φ̂N−1) approximating IR,µ[φ] and

a convex function ĴR,µ = ĴR,µ(p̂0, p̂1, . . . , p̂N ) approximating JR,µ[φ]. Note that φ̂N is not a degree of

freedom, since φ(A) = φ(rN ) = A is given. We also calculate the gradient vectors ∇ÎR,µ and ∇ĴR,µ.
We now report and analyze the results of our numerical tests. We first use the conjugate gradient

method to minimize both the functionals −IR,µ and JR,µ for a fixed R and for various values of the
penalty parameter µ and different numbers of the grid points N to test the duality as established
in Theorem 4.1 and the convergence of our numerical algorithms. In these tests, A = 1, R = 1/2,
ε− = 1, ε+ = 80, and g = 5. We consider two examples of the function f : f(r) = 1 and f(r) =
(1000/

√
2π)e−50r2

. For each N , the corresponding numerical maximizers and minimizers are denoted
by φN and pN , respectively. In Figure 5, we plot the L2-error ‖pN − (−εRφ′N )‖L2(0,A) and also the
energy difference vs. the number of grid points N for several values of the penalty parameter µ. The
energy difference is defined as the absolute value of the difference between the computed maximum
value of IR,µ and the computed minimum value of JR,µ. We see clearly that as N gets larger the
L2-error gets smaller, and the difference between the maximum of IR,µ and minimum of JR,µ gets
smaller. Therefore, our numerical method and implementation correctly verified the duality.

0

0.5

1

1.5

2

2.5

3
10

-4

 = 1

= 10
-1

= 10
-2

= 10
-3

2.5 3 4 5 6 7 8 9 10 
100

L2
_ e

rro
r

2

2

2

2

0

1

2

3

4

5

6

 = 1

= 10
-1

= 10
-2

= 10
-3

10
-2

L2_
er

ro
r

2.5 3 4 5 6 7 8 9 10
100

2

2

2

2

0

1

2

3

4

5

6

7
10

-4

 = 1

 = 10
-1

 = 10
-2

 = 10
-3

En
er

gy
 d

iff
er

en
ce

100

2.5 3 4 5 6 7 8 9 10

2

2

2

2

0

0.5

1

1.5

2
10

-3

 = 1

 = 10
-1

 = 10
-2

 = 10
-3

En
er

gy
 d

iff
er

en
ce

100
2.5 3 4 5 6 7 8 9 10

2

2

2

2

Figure 5: The L2-error (upper panel) and the energy difference (lower panel) vs. the number of grid
points N for f(r) = 1 (left) and f(r) = (1000/

√
2π)e−50r2

(right) for several µ-values.

In Table 1, we show the time in seconds for each run of our code for numerically minimizing
the functional JR,µ and numerically maximizing the functional IR,µ for several values of the penalty
parameter µ and a fixed number of grid points N = 1000. We test both the function f(r) = 1 and
f(r) = (1000/

√
2π)e−50r2

. We observe that in general the numerical minimization of JR,µ and the
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numerical maximization of IR,µ have a similar efficiency. This is partially due to the underlying
system is not very large. If the penalty value µ is not very small, then the minimization of JR,µ is
more efficient than that of the maximization of IR,µ. However, if the parameter µ is very small, then
maximizing IR,µ is faster than minimizing JR,µ. This may likely be due to the fact that the µ-term in
JR,µ makes the discretized and convex function relatively steep and the gradient is very large so that
more steps are needed in the conjugate gradient iteration.

2µ
f(r) = 1 f(r) = (1000/

√
2π)e−50r2

min time max time min time max time

10−1 1 11 1 10

10−2 2 10 1 10

10−3 5 12 6 12

10−4 10 11 10 12

10−5 27 10 27 12

Table 1: Computational time in seconds for minimizing the functional JR,µ (mark as “min time”) and
minimizing the functional −IR,µ (marked as “max time”) for several values of the penalty parameter
µ and two different functions f(r). The number of grid points is fixed to be N = 1000.

We now test the min-min and max-min approaches that are described in subsection 4.1 for min-
imizing the total energy Gµ = Gµ(R) defined in (4.9) for a fixed µ. Note that the electrostatic part
of the total energy Gµ(R) is defined by both min JR,µ and max IR,µ. We minimize the total energy
Gµ = Gµ(R) using the gradient descent method. After we find some approximation of the radius Rk,
then we maximize IRk,µ and minimize JRk,µ using the conjugate gradient descent method to find an
approximate maximizer φk+1 of IRk,µ and an approximate minimizer pk+1 of JRk,µ. These approxi-
mate optimizers are then used to calculate the gradient ∇G(Rk). We use a relatively fewer steps in
the conjugate gradient iterations for finding φk+1 and pk+1 in the max-min and min-min algorithms,
respectively, and compare the classical PB and the new LTPB formulations in terms of accuracy,
efficiency, and stability of numerical computations.

We set A = 1, γ0 = 1, ε− = 80, ε+ = 1, and g = 1. Note that ε− > ε+. This corresponds to an
interesting molecular application where water molecules are burried in a large protein molecule; cf.
the discussions and references in [5, 17]. We consider again the two functions f : [0, A] → R given by
f(r) = 1 and f(r) = (1000/

√
2π)e−50r2

. In order to compare the min-min and max-min algorithms, we
first minimize the total energy function G = G(R) defined in (4.8) that does not have the parameter µ.
With the initial guess R0 = 1/

√
2, the approximate (local) minimum value Gmin and (local) minimizer

Rmin of G are found to be, respectively,

Gmin = 2.0944 and Rmin = 5.9325× 10−7 for f(r) = 1,

Gmin = 8.0605 and Rmin = 0.3710 for f(r) =
1000√

2π
e−50r2

.

We choose a few values of the grid points N and a few values of the penalty parameter µ, and
run our numerical computations with the min-min and max-min algorithms, respectively. In our
gradient descent iteration for minimizing the function Gµ = Gµ(R), we choose the initial guess to
be R0 = 1/

√
2, same as that used in minimizing G = G(R). In Table 2 and Table 3, we show our

numerical results for f(r) = 1 and f(r) = (1000/
√

2π)e−50r2
, respectively, and in each table, for

2µ = 10−1 (upper), 2µ = 10−3 (middel), and 2µ = 10−5 (lower), respectively. In these tables, the
“Step” means the number of steps in the conjugate gradient iteration for minimizing JR,µ and −IR,µ.
The “energy error” and “radius error” are the absolute error between the numerical minimum value
of Gµ and Gmin and that between the numerical approximation of a minimizer of Gµ and Rmin.
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N Step
min-min min-max

energy error radius error time energy error radius error time

250 20 0.0177 9.9147 · 10−8 1s 1.2279 · 103 0.8940 1s

500 30 0.0800 5.5155 · 10−8 1s 2.0281 · 103 0.8974 1s

750 40 0.0479 2.8065 · 10−8 1s 1.8181 · 103 0.8453 1s

1000 50 0.0507 1.8288 · 10−7 1s 2.3916 · 103 0.9119 2s

f(r) = 1 and 2µ = 10−1.

N Step
min-min min-max

energy error radius error time energy error radius error time

250 20 0.0226 4.6575 · 10−8 1s 854.8550 0.7007 1s

500 30 0.0664 1.1507 · 10−7 1s 2.5794 · 103 0.9571 1s

750 50 0.0066 1.0083 · 10−7 1s 1.8220 · 103 0.9980 1s

1000 50 0.0470 2.9565 · 10−7 1s 2.3526 · 103 0.8957 2s

f(r) = 1 and 2µ = 10−3.

N Step
min-min min-max

energy error radius error time energy error radius error time

250 20 0.0613 1.2250 · 10−7 1s 1.4453 · 103 0.9730 1s

500 30 0.0828 1.1964 · 10−7 1s 1.1779 · 103 0.6993 1s

750 50 0.0578 3.7498 · 10−8 1s 1.1117 · 103 0.9571 1s

1000 60 0.0607 4.0233 · 10−7 1s 1.3643 · 103 0.8678 2s

f(r) = 1 and 2µ = 10−5.

Table 2: Numerical results for f(r) = 1 and three µ-values. The “Step” means the number of steps
in the conjugate gradient iteration for minimizing JR,µ and −IR,µ. The “energy error” and “radius
error” are the absolute error between the numerical minimum value of Gµ and Gmin and that between
the numerical approximation of a minimizer of Gµ and Rmin.

We observe from Table 2 and Table 3 that in general the min-min algorithm performs much
better than the max-min algorithm in terms of the computational accuracy and efficency. As N
increases, both the min-min and max-min algorithms take longer time to reach to the minimum value
approximately. For the case f(r) = 1 with any of those µ-values and any of the number of grid points
N , the min-min algorithm is more accurate and efficient than the max-min algorithm. With not so
many Steps, the min-min algorithm produces good approximations of the minimum energy value Gmin

and the minimizer of Rmin, while the max-min algorithm produces the approximations with very large
errors. For the case f(r) = (1000/

√
2π)e−50r2

with a small but not so small value of µ, the min-min
algorithm is still more accurate and efficient than the max-min algorithm. However, as µ decreases to
0, the max-min algorithm performs better than the min-min algorithm. Overall, our numerical results
suggest that the min-min algorithm with a few numbers of Steps may be more accurate and efficient
than the max-min algorithm in large-scale computations.
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N Step
min-min min-max

energy error radius error time energy error radius error time

250 150 0.0269 0.0050 1s 24.3156 0.3344 1s

500 300 0.0225 0.0010 1s 31.6441 0.3355 2s

750 500 0.0166 0.0078 1s 28.3402 0.3751 7s

1000 500 0.0189 0.0089 6s 38.4510 0.3360 27s

f(r) = (1000/
√

2π)e−50r2
and 2µ = 10−1.

N Step
min-min min-max

energy error radius error time energy error radius error time

250 500 0.0178 0.0030 1s 1.8707 0.3039 3s

500 1000 0.0043 0.0030 3s 2.0348 0.3351 8s

750 1200 0.0058 0.0110 7s 12.8557 0.3372 14s

1000 1500 0.0048 0.0060 24s 13.8456 0.4194 41s

f(r) = (1000/
√

2π)e−50r2
and 2µ = 10−3.

N Step
min-min min-max

energy error radius error time energy error radius error time

250 700 0.0159 0.0107 7s 0.0169 0.0030 2s

500 1600 0.0088 0.0090 32s 0.0092 0.0070 7s

750 2500 0.0050 0.0096 77s 0.0060 0.0057 12s

1000 3000 0.0016 0.0109 402s 0.0046 0.0060 40s

f(r) = (1000/
√

2π)e−50r2
and 2µ = 10−5.

Table 3: Numerical results for f(r) = (1000/
√

2π)e−50r2
and three µ-values. The “Step” means the

number of steps in the conjugate gradient iteration for minimizing JR,µ and −IR,µ. The “energy error”
and “radius error” are the absolute error between the numerical minimum value of Gµ and Gmin and
that between the numerical approximation of a minimizer of Gµ and Rmin.

Appendix

To prove Theorem 4.1, we need the following lemma that summarizes some properties, particularly
the behavior near r = 0, of the functions in H1

ω(0, A) and Y defined in section 4:

Lemma A.1. Let φ ∈ H1
ω(0, A) and p ∈ Y. Define u(r) = r2p(r) and v(r) = r2φ(r)p(r) for 0 < r ≤ A.

Then, sup0<r<A

√
r|φ(r)| < ∞, u ∈ H1(0, A) and u(r) = o(r3/2) as r → 0, and v ∈ W 1,1(0, A) and

v(r) = o(r) as r → 0.

Proof. Note for any δ ∈ (0, A) that φ ∈ H1(δ, A) and hence φ is absolutely continuous on [δ, A]. Now
for any r ∈ (0, A), we have

φ(r)2 =

[
φ(A)−

∫ A

r
φ′(s) ds

]2

≤ 2φ(A)2 + 2

(∫ A

r
φ′(s)ds

)2
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≤ 2φ(A)2 + 2

(∫ A

r
s2φ′(s)2ds

)(∫ A

r
s−2ds

)
= 2φ(A)2 + 2

(∫ A

r
s2φ′(s)2ds

)(
1

r
− 1

A

)
≤ 2φ(A)2 +

2

r
‖φ‖2ω.

Consequently, rφ(r)2 ≤ 2Aφ(A)2 + 2‖φ‖2H1
ω(0,A), and hence sup0<r<A

√
r|φ(r)| <∞.

Since p ∈ Y , we can directly verify that u ∈ H1(0, A), and hence u is absolutely continuous on
[0, A]. We must have u(0) := limr→0 u(r) = 0, since∫ A

0

u(r)2

r2
dr =

∫ A

0
r2p(r)2dr <∞.

Consequently, we have for 0 < r < A that

u(r)2 =

(∫ r

0
u′(s) ds

)2

≤
(∫ r

0
s2ds

)(∫ r

0

u′(s)2

s2
ds

)
=

1

3
r3 o(1) as r → 0,

and hence u(r) = o(r3/2) as r → 0.
Since v(r) = r2φ(r)p(r) (0 < r < A), we have ‖v‖L1(0,A) ≤ ‖φ‖ω‖p‖Y <∞. Consequently,∫ A

0
|v′(r)|dr =

∫ A

0
|φ′(r)r2p(r) + φ(r)(r2p(r))′|dr

≤
∫ A

0
|rφ′(r) rp(r)|dr +

∫ A

0

∣∣∣∣rφ(r)
[r2p(r)]′

r

∣∣∣∣ dr
≤
(∫ A

0
r2φ′(r)2dr

)1/2(∫ A

0
r2p(r)2dr

)1/2

+

(∫ A

0
r2φ(r)2dr

)1/2(∫ A

0
[(r2p(r))′]2

1

r2
dr

)1/2

≤ 2‖φ‖ω‖p‖Y <∞.

Hence, v ∈W 1,1(0, A), it is absolutely continuous, and v(r) =
√
rφ(r)u(r)/

√
r = o(r) as r → 0.

We now prove briefly Theorem 4.1 by providing mainly some details related to the properties of
functions in H1

ω(0, A) and Y , respectively.

Proof of Theorem 4.1. (1) This part can be proved using the direct method in the calculus of varia-
tions; cf. [14, 15,18].

(2) Let µ > 0, φ ∈ X, and p ∈ Y . Since φ(A) = g and limr→0+ r2φ(r)p(r) = 0 by Lemma A.1,∫ A

0
pφ′r2dr = −

∫ A

0

(
r2p
)′
φdr + gp(A)A2 = −

∫ A

0

(
2

r
p+ p′

)
φr2dr + gp(A)A2.

Consequently, by the fact that the Legendre transform of s 7→ (µ/2)s2 is ξ 7→ ξ2/(2µ), we obtain

IR,µ[φ] ≤ IR,µ[φ] + 4π

∫ A

0

1

2εR
|p+ εRφ

′|2r2 dr

= 4π

∫ A

0

(
fφ− χ−µ

2
φ2 − χ+

2
φ2 +

1

2εR
p2 + pφ′

)
r2dr.
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= 4π

∫ A

0

{
1

2εR
p2 + χ−

[(
f −

(
2

r
p+ p′

))
φ− µ

2
φ2

]
+χ+

[(
f −

(
2

r
p+ p′

))
φ− φ2

2

]}
r2dr + 4πgp(A)A2

≤ 4π

∫ A

0

(
1

2εR
p2 +

χ−
2µ

∣∣∣∣f − (
2

r
p+ p′)

∣∣∣∣2 +
χ+

2

∣∣∣∣f − (
2

r
p+ p′)

∣∣∣∣2
)
r2dr + 4πgp(A)A2

= JR,µ[p]. (A.1)

The inequality IR[φ] ≤ JR[p] for any φ ∈ X and p ∈ Y0 can be proved similarly.
By part (1), pR,µ = −εRφ′R,µ satisfies

(r2pR,µ)′ = (f − µφR,µ)r2 in (0, R) and (r2pR,µ)′ = (f − φR,µ)r2 in (R,A). (A.2)

These, together with the fact that φR,µ ∈ X, implies that pR,µ ∈ Y . Moreover, the first inequality in
(A.1) becomes an equality with φR,µ and pR,µ = −εRφ′R,µ replacing φ and p. The second inequality in
(A.1) also becomes an equality by (A.2) and the definition of the Legendre transform. Thus, by the
convexity of JR,µ, pR,µ is the unique minimizer of JR,µ over Y. Similarly, pR is the unique minimizer
of JR over Y0.

(3) By the same argument used in proving part (2) of Theorem 3.3, we have ‖φR,µ − φR‖ω → 0
and maxφ∈X IR,µ[φ] → maxφ∈X IR[φ] as µ → 0. These and part (2) imply ‖pR,µ − pR‖Y → 0 and
minp∈Y JR,µ[φ]→ minp∈Y0 JR[p] as µ→ 0.
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