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LEGENDRE TRANSFORMS OF ELECTROSTATIC FREE-ENERGY
FUNCTIONALS∗

BENJAMIN CIOTTI† AND BO LI‡

Abstract. In the Poisson–Boltzmann (PB) theory, the electrostatic free-energy functional of
all possible electrostatic potentials for an ionic solution is often formulated in such a way that the
Euler–Lagrange equation of such a functional is exactly the PB equation. However, such a PB
functional is concave downward and maximized at its critical point, making it inconsistent in many
applications where a macroscopic free-energy functional is minimized. Maggs [Europhys. Lett., 98
(2012), 16012] proposed a Legendre transformed form of the electrostatic free-energy functional of all
possible dielectric displacements. This new functional is convex and minimized at the displacement
corresponding to the critical point of the PB functional, and the minimum value is exactly the equi-
librium electrostatic free energy. In this work, we study mathematically the Legendre transformed
electrostatic free-energy functionals and the related variational principles. We first prove that the PB
functional and its Legendre transformed functional are equivalent. We then consider a phenomeno-
logical electrostatic free-energy functional that includes a higher-order gradient term, proposed by
Bazant, Storey, and Kornyshev [Phys. Rev. Lett., 106 (2011), 046102] to describe charge-charge
correlations. For such a functional, we introduce the corresponding Legendre transformed functional
and obtain the related equivalence. We further consider the case without ions. We show that the
electrostatic energy functional is equivalent to a Legendre transformed energy functional with con-
straint, and we prove the convergence of the Legendre transform of a perturbed electrostatic energy
functional. Finally, we apply the Legendre transform to the dielectric boundary electrostatic free
energy in molecular solvation.

Key words. electrostatic free-energy functionals, Legendre transforms, variational principles

AMS subject classification. 49S05

DOI. 10.1137/18M1167644

1. Introduction. We consider an ionic solution that consists of M ionic species
together with solvent and that occupies a bounded region Ω ⊆ R3. A commonly
used electrostatic free-energy functional, often termed the Poisson–Boltzmann (PB)
electrostatic free-energy functional, takes the form [2, 8, 11, 17, 19, 25, 34, 36]

I[φ] =

∫
Ω

[
−ε

2
|∇φ|2 + fφ−B(φ)

]
dx.(1.1)

Here, φ : Ω → R is any possible electrostatic potential, ε : Ω → R is the dielectric
coefficient that can vary spatially in the region Ω, and f : Ω → R is the density of
fixed charges. In the classical PB theory, the function B : R→ R is given by

B(φ) = β−1
M∑
i=1

c∞i
(
e−βqiφ − 1

)
,(1.2)
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where β = (kBT )−1 with kB the Boltzmann constant and T the absolute temper-
ature, c∞i is the bulk concentration of the ith ionic species, and qi = Zie is the
charge of an ion in the ith ionic species with Zi the valence of such an ion and e
the elementary charge. Note that the function B = B(s) is smooth and strictly
convex and is minimized at s = 0 under the usual assumption of charge neutrality:
B′(0) =

∑M
i=1 c

∞
i qi = 0. The Euler–Lagrange equation of the functional I = I[φ] is

∇ · ε∇φ−B′(φ) = −f.(1.3)

This is exactly the PB equation for the equilibrium electrostatic potential φ. Moreover,
the functional value I[φ] at this critical point φ, which is the same as the maximum
value of the functional I, is exactly the (macroscopic) electrostatic free energy.

The functional I defined in (1.1) is an expression of the electrostatic free energy
through the equilibrium electrostatic potential of an underlying ionic system. It can
be derived from minimizing the following effective electrostatic free-energy functional
of all the ionic concentrations ci : Ω→ [0,∞) (1 ≤ i ≤M) [8, 17, 25, 34]:

F [c]=

∫
Ω

{
1

2

(
f+

M∑
i=1

qici

)
φ+β−1

M∑
i=1

ci
[
ln
(
Λ3ci

)
− 1
]
−

M∑
i=1

µici−β−1
M∑
i=1

c∞i

}
dx,

(1.4)

where c = (c1, . . . , cM ). (We define s ln s = 0 for s = 0.) The first part of the free

energy F [c] is the electrostatic potential energy, where f +
∑M
i=1 qici is the total

charge density and φ : Ω → R is the corresponding electrostatic potential defined as
the solution to Poisson’s equation

∇ · ε∇φ = −

(
f +

M∑
i=1

qici

)
,(1.5)

together with some boundary conditions. The second part, where Λ is the thermal
de Broglie wavelength, is the entropy of the ions. The third part of the free energy
F [c] arises from the constraint of a fixed total number of ions in each ionic species.
Here µi is the chemical potential for an ion of the ith species and is related to other
parameters by µi = β−1 ln(Λ3c∞i ) [8]. The last part of the free energy F [c] is the
ionic pressure. Note that the functional F is strictly convex. The equilibrium ionic
concentrations ci = ci(x) (1 ≤ i ≤M), defined by the vanishing of the first variations
δciF [c] = 0 (1 ≤ i ≤M), and the corresponding equilibrium electrostatic potential φ,
satisfy the Boltzmann distributions ci(x) = c∞i e

−βqiφ(x) for x ∈ Ω and i = 1, . . . ,M.
These and Poisson’s equation (1.5) lead to the PB equation (1.3), where

−B′(φ) =

M∑
i=1

c∞i qie
−βqiφ =

M∑
i=1

qici

is exactly the local density of the ionic charges. Moreover, the free energy F is
minimized at the equilibrium concentrations, and this minimum value is exactly I[φ],
the (macroscopic) electrostatic free energy; see, e.g., [8, 25, 34] for more details.

We remark that the variational approach in the PB theory has been generalized
to include the ionic size effect (or excluded volume effect); cf. [6, 23, 24, 25] and
also [4, 7, 9, 14, 15, 20, 21, 22, 27, 29, 30, 38, 40]. Let us denote by vi the volume of
an ion in the ith ionic species (1 ≤ i ≤M). Let us also denote by c0 = c0(x) (x ∈ Ω)
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the local concentration of solvent molecules and by v0 the volume of a solvent molecule.
Then

∑M
i=0 vici(x) = 1 for all x ∈ Ω. This means that the solvent concentration is

determined by all the ionic concentrations. The generalized, size-modified electrostatic
free-energy functional of all the ionic concentrations is the same as the functional F [c]
defined in (1.4), except that the entropy integrand term (i.e., the logarithmic term

in the integrand) is replaced by β−1
∑M
i=0 [ci ln(vici)− 1] , where the sum starts from

i = 0 [6, 23, 24]. The new functional is strictly convex and admits a unique set of free-
energy minimizing concentrations that are determined by the equilibrium conditions
(i.e., the vanishing of first variations) [24, 25, 27]:

vi
v0

ln(v0c0)− ln(vici) = β (qiφ− µi) in Ω, i = 1, . . . ,M,(1.6)

where φ is the corresponding electrostatic potential. This set of nonlinear algebraic
equations determine uniquely the generalized Boltzmann distributions ci = ci(φ) (i =
1, . . . ,M). If all vi (i = 0, 1, . . . ,M) are the same, say, vi = v, then such distributions
are given by

ci =
c∞i e

−βqiφ

1 +
∑M
j=1 vc

∞
j (e−βqjφ − 1)

in Ω, i = 1, . . . ,M,(1.7)

where c∞i = v−1eβµi/(1 +
∑M
j=1 e

βµj ) (i = 1, . . . ,M). If the sizes are nonuniform,
then explicit formulas of Boltzmann distributions ci = ci(φ) (i = 1, . . . ,M) seem
unavailable. (Numerically, one can minimize the free-energy functional of concentra-
tions using Poisson’s equation (1.5) as a constraint; cf. [40]. Alternatively, one can
obtain such distributions by solving numerically the system of equations (1.6) for a
set of values of φ.) In any case (with or without the size effect included, and uniform
or nonuniform size when the size effect is included), the minimum electrostatic free
energy can be written in terms of the electrostatic potential φ as in (1.1), where the
function B : R→ R is defined by

−B′(φ) =

M∑
i=1

qici(φ) and B(0) = 0,(1.8)

The condition of the charge neutrality is now B′(0) = 0. It is shown in [24] that B is
smooth, strictly convex, and minimized uniquely at 0. The generalized PB equation
has exactly the same form as in (1.3).

An advantage of the PB theory (classical or size-modified) is that once the equilib-
rium potential φ is determined by solving the PB equation, all the ionic concentrations
are also known. However, the fact that the critical point φ maximizes the functional
I defined in (1.1), due to the negative quadratic term in the functional, makes it in-
consistent to couple the PB electrostatic free energy with other macroscopic energies,
such as the surface energy of a dielectric boundary, that are often minimized to yield
a stable equilibrium state. Naturally, one tries to construct a free-energy functional
that is satisfactory in several ways. First, such a functional should have a unique
minimizer and the corresponding minimum value should be the exact (macroscopic)
electrostatic free energy. Second, the minimizer should satisfy the PB equation. It
turns out that this is impossible as shown in [8].

To see the idea, let us only consider the case in which there are no mobile ionic
charges; and hence set the B-term to be 0. The electrostatic energy is given by

E =

∫
Ω

1

2
fφ dx,(1.9)
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where φ is the solution to Poisson’s equation

∇ · ε∇φ = −f,(1.10)

together with some boundary conditions. Using this equation, we have by integration
by parts that

E =

∫
Ω

(
fφ− 1

2
fφ

)
dx

=

∫
Ω

[
fφ+

1

2
(∇ · ε∇φ)φ

]
dx

=

∫
Ω

(
fφ− ε

2
|∇φ|2

)
dx+ some boundary terms.

If the region Ω is large enough, with its boundary far away from the support of f
(the closure of the set of points where f is not zero), then the boundary terms are
small and can be neglected. This derivation shows how the negative quadratic term
appears. Now the electrostatic potential φ, the solution to Poisson’s equation (1.10),
maximizes this functional (without the boundary terms). One may try the following
functional: ∫

Ω

(
a|∇φ|2 + bφ

)
dx

for some a and b that can depend on f and ε but not on φ. If the functional is
minimized at some φ that solves Poisson’s equation and the minimum value is the
same as (1.9), then the only choice of a and b is that a = −ε/2 and b = f ; cf. [8].

To resolve the issue of concavity of the PB free-energy functional, Maggs [31]
constructed a Legendre transformed electrostatic free-energy functional of all possible
electrostatic displacements D : Ω→ R3 :

D 7→
∫

Ω

[
1

2ε
|D|2 +B∗(f −∇ ·D)

]
dx.(1.11)

Here B∗ is the Legendre transform of the function B. Indeed, the dielectric displace-
ment is related to the electrostatic potential φ by D = −ε∇φ. This allows us to
rewrite

−ε
2
|∇φ|2 =

1

2ε
|D|2 +D · ∇φ.

With this and an integration by parts, we can then rewrite the original PB functional
(1.1) into ∫

Ω

[
−ε

2
|∇φ|2 + fφ−B(φ)

]
dx

=

∫
Ω

[
1

2ε
|D|2 + (f −∇ ·D)φ−B(φ)

]
dx+ boundary term.

Now, the terms (f − ∇ · D)φ − B(φ) are related to the Legendre transform of the
convex function B evaluated at f−∇·D. Therefore, it is natural to construct the func-
tional (1.11) [31]. Pujos and Maggs [33] applied this approach to develop models for
computer simulations of fluctuations in ionic solution. Maggs and Podgornik [32] and
Blossey, Maggs, and Podgornik [5] have also used the Legendre transformed functional
to study the asymmetric steric effect and correlations in electrostatic interactions.



ELECTROSTATIC FREE-ENERGY FUNCTIONALS 2977

We recall that the Legendre transform h∗ : R → R ∪ {+∞} for a given function
h : R→ R is defined by [35, 41]

h∗(ξ) = sup
s∈R

[sξ − h(s)] ∀ξ ∈ R.

If h is smooth, strictly convex, and minimized at some critical point, then h∗ : R→ R
is also smooth and strictly convex, and

h∗(ξ) = s∗ξ − h(s∗), h′(s∗) = ξ, and h∗′(ξ) = s∗.(1.12)

In this work, we study mathematically Maggs’ Legendre transformed functional
with extension to several cases and with application to dielectric boundary implicit-
solvent models for the solvation of charged molecules.

(1) We give a rigorous proof of the equivalence of the Legendre transformed func-
tional (cf. (1.11)) and the original PB functional (cf. (1.1)). This means in par-
ticular that the minimizing displacement field D of the Legendre transformed
functional is exactly the one that corresponds to the maximizing potential φ
of the PB functional: D = −ε∇φ. We also derive the interface conditions for
the equilibrium displacement for the case with a dielectric boundary.

(2) We study a phenomenological free-energy functional that includes higher-
order gradients of the electrostatic potential, proposed by Bazant, Storey, and
Kornyshev [3] for describing charge-charge correlations. In a simple setting
(e.g., without the surface charges), this functional can be written as

φ 7→
∫

Ω

[
−ε

2

(
|∇φ|2 + l2c |∆φ|2

)
+ fφ−B(φ)

]
dx,

where lc > 0 is the (constant) correlation length. We shall introduce a corre-
sponding Legendre transformed functional and prove that these functionals
are equivalent.

(3) We consider the case where there are no mobile ions in an underlying elec-
trostatic system. The electrostatic energy of such a system is the same as
(1.1) except the B-term is not included. This setting is simpler but is in fact
more subtle to understand, as the Legendre transform of the zero function is
+∞ everywhere except at 0. We shall first show that the electrostatic energy
functional is equivalent to the Legendre transformed functional

D 7→
∫

Ω

1

2ε
|D|2dx(1.13)

that is to be minimized over the class of displacements D such that ∇ ·
D = f in Ω. Following the suggestion in [31], we also consider a perturbed
electrostatic energy functional

Iµ[φ] =

∫
Ω

[
−ε

2
|∇φ|2 + fφ− µ

2
|φ|2

]
dx,

where µ > 0 is a small parameter. We apply the Legendre transform to
this functional and prove that the minimizing displacement and minimum
value of the transformed energy converge as µ → 0 to the displacement of
the maximizing electrostatic potential and maximum value of the original,
unperturbed functional.
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(4) We consider the dielectric boundary electrostatic free-energy functional in the
implicit-solvent model for the solvation of charged molecules [12, 13, 26, 39]

IΓ[φ] =

∫
Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ)

]
dx.

Here, Γ is the dielectric boundary—an interface that separates a solute region
(i.e., the region of charged molecules) Ω− from the solvent (e.g., salted wa-
ter) region Ω+ in which there are mobile ions, f represents the fixed charges
of solute atoms, and χ+ = χΩ+

is the characteristic function of the solvent
region. The dielectric coefficient εΓ is a constant in Ω− and another constant
in Ω+. The term χ+B(φ) results from a usual assumption in the implicit-
solvent modeling that the mobile ions do not penetrate into the solute region.
Based on our analysis of the corresponding Legendre transform of the inte-
grand of IΓ[φ], we propose to use the same Legendre transformed electrostatic
free-energy functional (1.11) but identify the admissible electrostatic displace-
ments to be those vector fields D : Ω→ R3 such that ∇ ·D = f in Ω−. With
such a setting, we again prove the equivalence of the two free-energy func-
tionals.

The rest of this paper is organized as follows. In section 2, we prove the equiv-
alence of the PB (classic or size-modified) free-energy functional and its Legendre
transformed functional. In section 3, we consider a phenomenological electrostatic
free-energy functional that involves a higher-order gradient term. We introduce its
Legendre transformed functional and prove the equivalence of these two formulations.
In section 4, we consider the case without ions. We show that the electrostatic energy
functional is equivalent to a Legendre transformed energy functional with constraint.
We also show the convergence of the Legendre transform of the perturbed electrostatic
energy functional. In section 5, we study the Legendre transformed electrostatic free-
energy functional for the dielectric boundary implicit-solvent model for the solvation
of charged molecules. Finally, in section 6, we draw conclusions and present a brief
discussion of our results.

2. Equivalence of two free-energy functionals. Let Ω be a bounded domain
in R3 with a C2 boundary ∂Ω, f ∈ L2(Ω), and g ∈ W 1,∞(Ω). (We use standard
notation of Lebesgue and Sobolev spaces as in [1, 18].) Denote

H1
g (Ω) =

{
u ∈ H1(Ω) : u = g on ∂Ω

}
.

Here and below, the boundary values are understood in the sense of trace [1, 18]. Let
ε ∈ L∞(Ω) be such that εmin ≤ ε(x) ≤ εmax for all x ∈ Ω, where εmin and εmax are
two positive constants. Let B ∈ C3(R) be such that

(1) B is strictly convex in R;
(2) B is minimized at 0 with minimum value B(0) = 0; and
(3) B(±∞) =∞, and either B′(±∞) = ±∞ or B′ is bounded.

In the classical PB theory, the function B is given in (1.2), and hence B′(±∞) = ±∞.
In the size-modified PB theory, it is shown in [24] that B′ is bounded. Note that the
Legendre transform B∗ : R → R is a strictly convex and C2 function. In particular,
B∗(0) = 0, since B′(0) = 0. We define I : H1

g (Ω) → R ∪ {−∞} by (1.1). Note that
I[φ] <∞ for any φ ∈ H1

g (Ω).

Theorem 2.1. The functional I : H1
g → R ∪ {−∞} has a unique maximizer

φB ∈ H1
g (Ω) and the maximum value is finite. Moreover, φB is the unique weak

solution to the boundary-value problem of PB equation
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Ω

[ε∇φB · ∇η +B′(φB)η] dx =

∫
Ω

fη dx ∀η ∈ H1
0 (Ω),(2.1)

and φB ∈ L∞(Ω).

Proof. For the classical PB functional where the function B is given in (1.2), this is
similar to the proof of Theorem 2.1 in [26]. For the size-modified PB functional, where
B is given by (1.7) or implicitly by (1.8), this is similar to the proof of Theorem 5.1
in [24], where the fact that φB ∈ L∞(Ω) is a direct consequence of the PB equation
and regularity theory [18, Chapter 8].

We denote

H(div,Ω) =
{
D ∈

[
L2(Ω)

]3
: ∇ ·D ∈ L2(Ω)

}
,

where the divergence ∇ ·D is defined in the weak sense:∫
Ω

∇ ·Dη dx = −
∫

Ω

D · ∇η dx ∀η ∈ H1
0 (Ω).(2.2)

We recall that H(div,Ω) is a Hilbert space with the inner product [37]

〈D,G〉 =

∫
Ω

[D ·G+ (∇ ·D)(∇ ·G)] dx ∀D,G ∈ H(div,Ω).

If D ∈ H(div,Ω), then the trace D · n : ∂Ω → R is in L2(∂Ω), where n is the unit
exterior normal at the boundary ∂Ω, and∫

Ω

(∇ ·D) η dx = −
∫

Ω

D · ∇η dx+

∫
∂Ω

(D · n) η dS ∀η ∈ H1(Ω);(2.3)

see [37]. We define J : H(div,Ω)→ R ∪ {+∞} by

J [D] =

∫
Ω

[
1

2ε
|D|2 +B∗(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS.(2.4)

Note that we have an additional boundary integral term in this functional, com-
pared with the functional defined in (1.11). Formal calculations show that the Euler–
Lagrange equation for the functional J : H(div,Ω)→ R ∪ {+∞} is

D

ε
+∇(B∗′(f −∇ ·D)) = 0 in Ω.(2.5)

Let us denote

H0(div,Ω) = {D ∈ H(div,Ω) : D · n = 0 on ∂Ω}.

(Note that this is not the subspace of H(div,Ω) that consists of divergence-free vector
fields. The subscript 0 here indicates a vanishing normal component of the vector
field on the boundary.) We call D ∈ H(div,Ω) a weak solution to the Euler–Lagrange
equation (2.5) if∫

Ω

[
D ·G
ε
−B∗′(f −∇ ·D)(∇ ·G)

]
dx = 0 ∀G ∈ H0(div,Ω).(2.6)

The following theorem indicates that the PB electrostatic free-energy functional
I defined in (1.1) and its Legendre transformed free-energy functional J defined in
(2.4) are equivalent.
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Theorem 2.2. We have

I[φ] ≤ J [D] ∀φ ∈ H1
g (Ω) ∀D ∈ H(div,Ω).(2.7)

Moreover, if φB ∈ H1
g (Ω) is the unique maximizer of I : H1

g (Ω) → R ∪ {−∞} and
DB = −ε∇φB , then DB ∈ H(div,Ω) and

I[φB ] = max
φ∈H1

g(Ω)
I[φ] = min

D∈H(div,Ω)
J [D] = J [DB ].(2.8)

In particular, DB is the unique minimizer of J : H(div,Ω) → R ∪ {+∞} with a
finite minimum value, and DB is also the unique weak solution to the boundary-value
problem of the Euler–Lagrange equation for the functional J : H(div,Ω)→ R∪{+∞}

D

ε
+∇(B∗′(f −∇ ·D)) = 0 in Ω,(2.9)

B∗′(f −∇ ·D) = g on ∂Ω.(2.10)

We note that the inequality (2.7) shows that the functional of two-variable (φ,D)
derived in [31] (cf. equation (17) there) is convex in D and concave in φ. We also
note that if D = DB , then the Euler–Lagrange equation (2.9) is just the constitutive
relation DB = −ε∇φB , and the boundary condition (2.10) is just the boundary
condition for φB : φB = g on ∂Ω.

Proof of Theorem 2.2. Let φ ∈ H1
g (Ω) and D ∈ H(div,Ω). By the definition of

the Legendre transform and integration by parts, we obtain

I[φ] =

∫
Ω

[
−ε

2
|∇φ|2 + fφ−B(φ)

]
dx

≤
∫

Ω

[
−ε

2
|∇φ|2 + fφ−B(φ) +

1

2ε
|D + ε∇φ|2

]
dx

=

∫
Ω

[
1

2ε
|D|2 + fφ−B(φ) +D · ∇φ

]
dx

=

∫
Ω

[
1

2ε
|D|2 + (f −∇ ·D)φ−B(φ)

]
dx+

∫
∂Ω

gD · ndS

≤
∫

Ω

[
1

2ε
|D|2 +B∗(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS

= J [D].(2.11)

This proves (2.7).
Now let φB ∈ H1

g (Ω) be the unique maximizer of I over H1
g (Ω) and let DB =

−ε∇φB . Clearly, DB ∈ [L2(Ω)]3. By (2.1) and (2.2), ∇ ·DB = f − B′(φB) ∈ L2(Ω).
Hence DB ∈ H(div,Ω). Moreover,

f −∇ ·DB = B′(φB) ∈ H1(Ω).(2.12)

This and (1.12) imply that

B∗(f −∇ ·DB) = (f −∇ ·DB)φB −B(φB) a.e. Ω,(2.13)

B∗′(f −∇ ·DB) = φB a.e. Ω.(2.14)
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Repeating similar steps in (2.11) above, we have then by (2.13) that

I[φB ] =

∫
Ω

[
−ε

2
|∇φB |2 + fφB −B(φB)

]
dx

=

∫
Ω

[
−ε

2
|∇φB |2 + fφB −B(φB) +

1

2ε
|DB + ε∇φB |2

]
dx

=

∫
Ω

[
1

2ε
|DB |2 + fφB −B(φB) +D · ∇φB

]
dx

=

∫
Ω

[
1

2ε
|DB |2 + (f −∇ ·DB)φB −B(φB)

]
dx+

∫
∂Ω

gDB · ndS

=

∫
Ω

[
1

2ε
|DB |2 +B∗(f −∇ ·DB)

]
dx+

∫
∂Ω

gDB · ndS

= J [DB ].(2.15)

By (2.11) and (2.15), we have for any D ∈ H(div,Ω) that J [DB ] = I[φB ] ≤ J [D]. This
implies (2.8), and DB minimizes J over H(div,Ω). Since the Legendre transform takes
convex functions to convex functions, the uniqueness of minimizer of J : H(div,Ω)→
R ∪ {+∞} follows from the strict convexity of J . Clearly, the minimum value J [DB ]
is finite.

By Theorem 2.1, φB ∈ H1(Ω) ∩ L∞(Ω), and hence, by (2.12), f − ∇ · DB ∈
H1(Ω) ∩ L∞(Ω). Consequently, for any G ∈ [C1(Ω)]3 ⊂ H(div,Ω), we conclude from
that fact that δJ [DB ][G] := (d/dt)|t=0J [DB+tG] = 0, and from Lebesgue’s dominated
convergence theorem allowing the exchange of the limit and integration that

δJ [DB ][G] =

∫
Ω

[
DB ·G
ε

+B∗′(f −∇ ·DB)(−∇ ·G)

]
dx+

∫
∂Ω

gG · ndS = 0.

(2.16)

By (2.14), B∗′(f −∇ ·DB) = φB ∈ H1(Ω) ∩ L∞(Ω). Note that [C1(Ω)]3 is dense in
H(div,Ω). It then follows that (2.16) holds true for any G ∈ H(div,Ω). In particular,
(2.6) is true for any G ∈ H0(div,Ω), implying that DB is a weak solution to (2.9). It
follows from (2.3) and (2.16) with G ∈ H(div,Ω) that

∫
Ω

[
DB

ε
+∇

(
B∗′(f −∇ ·DB)

)]
·Gdx+

∫
∂Ω

[
g −B∗′(f −∇ ·DB)

]
G · ndS = 0.

(2.17)

By choosing G ∈ H0(div,Ω), we obtain (2.9) with D = DB . The two equations
(2.9) and (2.17) then imply that the second integral in (2.17) vanishes for any G ∈
H(div,Ω). This leads to (2.10) with D = DB . The uniqueness of the weak solution
follows from the strict convexity of B∗ and a usual argument; cf., e.g., the proof of
Theorem 2.1 in [26].

Let us denote

W = {D ∈ H(div,Ω) : there exists φ ∈ H1(Ω) such that D = −ε∇φ}.
Clearly, this is a linear subspace of H(div,Ω). The following is a direct consequence
of Theorem 2.2:

Corollary 2.3. Let DB be the minimizer of the functional J : H(div,Ω) →
R ∪ {+∞} as stated in Theorem 2.2. Then, DB ∈W and

J [DB ] = min
D∈H(div,Ω)

J [D] = min
D∈W

J [D].
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We now consider the dielectric boundary problem and the interface conditions for
the minimizer of the Legendre transformed functional. Let Γ be a C2, closed surface
such that Γ ⊂ Ω. Denote Ω− the interior of Γ and Ω+ = Ω \ Ω−. So, both Ω− and
Ω+ are bounded open sets in R3, and Ω = Ω− ∪ Ω+ ∪ Γ. We assume now that the
dielectric coefficient is given by

ε(x) = εΓ(x) =

{
ε− if x ∈ Ω−,

ε+ if x ∈ Ω+,
(2.18)

where ε− and ε+ are two distinct positive numbers. We denote by JuK = u|Ω+ −u|Ω−
the jump across Γ of a function u : Ω → R from Ω+ to Ω−. We also denote by n
the unit normal at Γ pointing from Ω− to Ω+. Since the piecewise constant function
ε ∈ L∞(Ω), Theorem 2.2 still holds true. It follows from routine calculations [25, 26]
that the maximizer φB ∈ H1

g (Ω) of I : H1
g (Ω) → R ∪ {−∞} is characterized by the

following set of equations:
ε−∆φB −B′(φB) = −f in Ω−,

ε+∆φB −B′(φB) = −f in Ω+,

JφBK = 0 and JεΓ∇φB · nK = 0 on Γ,

φB = g on ∂Ω.

(2.19)

In particular, φB |Ω± ∈ H2(Ω±). The spaces H2(Ω±) can be replaced by H3(Ω±) if
f ∈ H1(Ω).

The following theorem provides a similar set of conditions that characterize the
minimizer DB of the Legendre transformed functional J : H(div,Ω)→ R ∪ {+∞}.

Theorem 2.4. Assume f ∈ H1(Ω). Let D ∈ [L2(Ω)]3 be such that D|Ω− ∈
[H2(Ω−)]3 and D|Ω+ ∈ [H2(Ω+)]3. Then D = DB ∈ H(div,Ω) (the unique minimizer
of J : H(div,Ω) → R ∪ {+∞} as in Theorem 2.2) if and only if D satisfies the
following set of equations:

D

ε−
+∇

(
B∗′(f −∇ ·D)

)
= 0 in Ω−,

D

ε+
+∇

(
B∗′(f −∇ ·D)

)
= 0 in Ω+,

JD · nK = 0 and J∇ ·DK = 0 on Γ,

B∗′(f −∇ ·D) = g on ∂Ω.

(2.20)

We note that if D = DB , the unique minimizer of J : H(div,Ω) → R ∪ {+∞},
then D = −εΓ∇φB with φB the unique maximizer of I : H1

g (Ω) → R ∪ {−∞}.
Consequently, the first interface condition JD · nK = 0 on Γ in (2.20) is exactly the
second interface condition JεΓ∇φB · nK = 0 on Γ in (2.19), and, as shown below in
the proof of Theorem 2.4, the second interface condition J∇ ·DK = 0 on Γ in (2.20)
is exactly the first interface condition JφBK = 0 on Γ in (2.19). Moreover, the last
equations in (2.20) and (2.19) are exactly the same.

Proof of Theorem 2.4. Clearly, the minimizer DB = −εΓ∇φB ∈ [L2(Ω)]3, where
φB ∈ H1

g (Ω) is the maximizer of I : H1
g (Ω)→ R∪{−∞}. Moreover, by the regularity

of φB , we have DB |Ω± ∈ [H2(Ω±)]3. It follows from (2.16), the divergence theorem,
and the fact that the unit normal n points from Ω− to Ω+ that
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0 = δJ [DB ][G]

=

∫
Ω−

[
DB ·G
ε

+B∗′(f −∇ ·DB)(−∇ ·G)

]
dx

+

∫
Ω+

[
DB ·G
ε

+B∗′(f −∇ ·DB)(−∇ ·G)

]
dx+

∫
∂Ω

gG · ndS

=

∫
Ω−

[
DB

ε
+∇

(
B∗′(f −∇ ·DB)

)]
·Gdx

+

∫
Ω+

[
DB

ε
+∇

(
B∗′(f −∇ ·DB)

)]
·Gdx+

∫
Γ

JB∗′(f −∇ ·DB)KG · ndS

+

∫
∂Ω

[
g −B∗′(f −∇ ·DB)

]
G · ndS ∀G ∈ H(div,Ω).

(2.21)

Choosing G with its support inside Ω+ and Ω− implies the first two equations in
(2.20), respectively. As a result, the above equation is reduced to the one without any
volume integrals. Choosing G supported inside Ω implies that JB∗′(f −∇·DB)K = 0,
which further implies that J∇·DBK = 0 on Γ, since B∗′ is a strictly monotonic function
and the trace of f ∈ H1(Ω) on Γ is well defined. The above equation is then further
reduced to the one with the right-hand side being only the integral over ∂Ω. This
then finally leads to the boundary condition in the last equation of (2.20). The first
interface condition JDB · nK = 0 follows from the relation DB = −εΓ∇φB and the
continuity JεΓ∇φB · nK = 0 on Γ in (2.19).

Assume now D ∈ [L2(Ω)]3 with D|Ω± ∈ [H2(Ω±)]3. Define q ∈ L2(Ω) by q = ∇·D
in Ω− ∪ Ω+. Since JD · nK = 0 on Γ and n points from Ω− to Ω+,∫

Ω

qu dx =

∫
Ω−

(∇ ·D)u dx+

∫
Ω+

(∇ ·D)u dx

= −
∫

Ω−

D · ∇u dx−
∫

Ω+

D · ∇u dx−
∫

Γ

JD · nKu dS

= −
∫

Ω

D · ∇u dx ∀u ∈ H1
0 (Ω).

Hence, q = ∇·D and D ∈ H(div,Ω). If D also satisfies (2.20), then we have by similar
calculations as before (cf. (2.16) and (2.21)) that δJ [D][G] = 0 for all G ∈ H(div,Ω).
Since J is strictly convex, D is the unique minimizer of J , and hence D = DB .

3. The case with a higher-order gradient term. In this (and only in this)
section, we shall assume that ε is a constant for simplicity. We also assume that the
boundary of Ω and the function f and g on Ω are all sufficiently smooth so that the
solution to an underlying boundary-value problem of partial differential equation is
regular enough. Let σ > 0 be a constant. We define

H2
g (Ω) = {φ ∈ H2(Ω) : φ = g and ∂nφ = ∂ng on ∂Ω},

and Î : H2
g (Ω)→ R ∪ {−∞} by [3]

Î[φ] =

∫
Ω

[
−σ

2
(∆φ)2 − ε

2
|∇φ|2 + fφ−B(φ)

]
dx.
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Here the higher-order gradient term −(σ/2)|∆φ|2 describes the ion-ion correlation
with

√
σ/ε the correlation length [3]. This functional is the same as the phenomeno-

logical electrostatic free-energy functional proposed in [3] except we drop the surface
charge term for simplicity. By formal calculations, the Euler–Lagrange equation of
the functional Î is

σ∆2φ− ε∆φ+B′(φ) = f in Ω.

A function φ ∈ H2
g (Ω) is a weak solution to this equation if∫

Ω

[σ∆φ∆η + ε∇φ · ∇η +B′(φ)η] dx =

∫
Ω

fη dx ∀η ∈ H2
0 (Ω).(3.1)

Theorem 3.1. There exists a unique φ̂ ∈ H2
g (Ω) such that Î[φ̂] = maxφ∈H2

g(Ω) Î[φ]

with a finite maximum value. Moreover, φ̂ is the unique weak solution to the boundary-
value problem

σ∆2φ− ε∆φ+B′(φ) = f in Ω,(3.2)

φ = g and ∂nφ = ∂ng on ∂Ω.(3.3)

Proof. We consider equivalently the minimization of the functional −Î. Note that
u 7→ ‖∆u‖L2(Ω) is a norm of H2

0 (Ω) that is equivalent to the H2(Ω)-norm. Therefore,
since B ≥ 0, there exist constants C1 > 0 and C2 ≥ 0 such that

−Î[u] ≥ C1‖u‖2H2(Ω) − C2 ∀u ∈ H2
g (Ω).(3.4)

Now, let α = infφ∈H2
g(Ω)(−Î)[φ] > −∞. Clearly, α ≤ (−Î)[g] < ∞ and hence α is

finite. Let φj ∈ H2
g (Ω) (j = 1, 2, . . .) be such that (−Î)[φj ]→ α. Then, it follows from

(3.4) that {φj} is bounded in H2(Ω). Since H2(Ω) is a Hilbert space and can be com-
pactly embedded into H1(Ω) and C(Ω), there exists a subsequence, not relabeled, of
{φj} that converges weakly in H2(Ω), strongly in H1(Ω), and uniformly on Ω to some

φ̂ ∈ H2(Ω). Since H2
g (Ω) is convex and closed in H2(Ω) by the trace theorem [16, 18],

it is weakly closed in H2
g (Ω). Hence φ̂ ∈ H2

g (Ω). Clearly, −Î is strictly convex. More-

over, it is continuous with respect to the strong convergence of H2(Ω). Therefore, −Î
is weakly lower-semicontinuous, and hence lim infj→∞(−Î)[φj ] ≥ (−Î)[φ̂]. This im-

plies that (−Î)[φ̂] = α and that φ̂ is a minimizer of −Î over H2
g (Ω). The uniqueness of

such a minimizer is a consequence of the strict convexity of the functional −Î . Finally,
noting that φ̂ ∈ C(Ω), we obtain (3.1), with φ̂ replacing φ, by routine calculations;

hence φ̂ ∈ H2
g (Ω) is a weak solution to the boundary-value problem (3.2) and (3.3).

The uniqueness of such a weak solution again follows from the strict convexity of the
functional −Î.

We define

H2(div,Ω) = {D ∈ [H2(Ω)]3 : ∇ ·D ∈ H2(Ω)}.

Note that if D ∈ H2(div,Ω), then∫
Ω

∆(∇ ·D) η dx = −
∫

Ω

∇(∇ ·D) · ∇η dx+

∫
∂Ω

∂n(∇ ·D) η dS ∀η ∈ H1(Ω).
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We define the Legendre transformed functional Ĵ : H2(div,Ω) → R ∪ {+∞} of the
functional Î : H2

g (Ω)→ R ∪ {−∞} by

Ĵ [D] =

∫
Ω

[
1

2ε
|D|2 +

σ

2ε
|∇ ·D|2 +B∗

(
f −∇ ·D +

σ

ε
∆(∇ ·D)

)]
dx

+

∫
∂Ω

{[
D · n− σ

ε
∂n(∇ ·D)

]
g +

σ

ε
(∇ ·D)∂ng

}
dS.

The following theorem is parallel to Theorem 2.2.

Theorem 3.2. We have

Î[φ] ≤ Ĵ [D] ∀φ ∈ H2
g (Ω) ∀D ∈ H2(div,Ω).(3.5)

Moreover, if φ̂ ∈ H2
g (Ω) is the unique maximizer of Î : H2

g (Ω) → R ∪ {−∞} and

D̂ = −ε∇φ̂, then D̂ ∈ H2(div,Ω) and

Î[φ̂] = max
φ∈H2

g(Ω)
Î[φ] = min

D∈H2(div,Ω)
Ĵ [D] = Ĵ [D̂].(3.6)

In particular, D̂ is the unique minimizer of Ĵ : H2(div,Ω)→ R∪ {+∞} with a finite
minimum value.

Proof. Fix φ ∈ H2
g (Ω) and D ∈ H2(div,Ω). We have by the definition of Î[φ] and

Ĵ [D], integration by parts, and the fact that φ = g and ∂nφ = ∂ng on ∂Ω that

Î[φ] =

∫
Ω

[
−σ

2
(∆φ)2 − ε

2
|∇φ|2 + fφ−B(φ)

]
dx

(3.7)

≤
∫

Ω

[
−σ

2
(∆φ)2 − ε

2
|∇φ|2+fφ−B(φ) +

σ

2ε2
|∇ ·D + ε∆φ|2+

1

2ε
|D+ε∇φ|2

]
dx

=

∫
Ω

[
σ

2ε2
|∇ ·D|2 +

1

2ε
|D|2 + fφ−B(φ) +

σ

ε
(∇ ·D)∆φ+D · ∇φ

]
dx

=

∫
Ω

[
σ

2ε2
|∇ ·D|2 +

1

2ε
|D|2 + fφ−B(φ)− σ

ε
∇(∇ ·D) · ∇φ− (∇ ·D)φ

]
dx

+

∫
∂Ω

[σ
ε

(∇ ·D)∂ng + (D · n)g
]
dS

=

∫
Ω

[
σ

2ε2
|∇ ·D|2 +

1

2ε
|D|2 + φ

(
f −∇ ·D +

σ

ε
∆(∇ ·D)

)
−B(φ)

]
dx

+

∫
∂Ω

[σ
ε

(∇ ·D)∂ng + (D · n)g − σ

ε
∂n(∇ ·D)g

]
dS

≤
∫

Ω

[
1

2ε
|D|2 +

σ

2ε2
|∇ ·D|2 +B∗

(
f −∇ ·D +

σ

ε
∆(∇ ·D)

)]
dx

+

∫
∂Ω

{[
D · n− σ

ε
∂n(∇ ·D)

]
g +

σ

ε
(∇ ·D)∂ng

}
dS.

= Ĵ [D].

This proves (3.5).

Now let φ̂ ∈ H2
g (Ω) be the unique maximizer of Î over H2

g (Ω) and let D̂ = −ε∇φ̂.
Since φ̂ satisfies (3.2) and all Ω, f , and g are sufficiently smooth, we have φ̂ ∈ H3(Ω)
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and ∆φ̂ ∈ H2(Ω). These imply that D̂ ∈ H2(div,Ω). Moreover, by (3.2) again, we
have

f −∇ · D̂ +
σ

ε
∆(∇ · D̂) = B′(φ̂) a.e. Ω.(3.8)

This and (1.12) imply that

B∗
(
f −∇ · D̂ +

σ

ε
∆(∇ · D̂)

)
= φ̂

(
f −∇ · D̂ +

σ

ε
∆(∇ · D̂

)
−B(φ̂) a.e. Ω.

(3.9)

Repeating (3.7) above with φ̂ and D̂ replacing φ and D, respectively, noting that the

two inequalities are in fact equalities in this case, we then obtain Î[φ̂] = Ĵ [D̂]. This
implies (3.6). Hence D̂ minimizes Ĵ over H2(div,Ω). Since the Legendre transform
takes convex functions to convex functions, the uniqueness of the minimizer of Ĵ :
H2(div,Ω)→ R∪{+∞} follows from the strict convexity of Ĵ . Clearly, the minimum
value Ĵ [D̂] is finite.

4. The case without ions. We define I0 : H1
g (Ω)→ R by

I0[φ] =

∫
Ω

(
−ε

2
|∇φ|2 + fφ

)
dx ∀φ ∈ H1

g (Ω).(4.1)

This functional is the same as I[φ] with B(φ) replaced by the 0 function. Let us
denote by B0 the 0 function, i.e., B0(s) = 0 for all s ∈ R. As in the previous case, we
define J̃0 : H(div,Ω)→ R ∪ {+∞} by

J̃0[D] =

∫
Ω

[
1

2ε
|D|2 +B∗0(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS ∀D ∈ H(div,Ω).

However, by the definition of Legendre transform, B∗0(ξ) =∞ if ξ 6= 0 and B∗0(0) = 0.
Hence, J̃0[D] = +∞ for all D ∈ H(div,Ω) except those that satisfy ∇ · D = f a.e.
in Ω. We therefore consider the following constrained variational problem: Minimize
the functional J0 : H(divf ,Ω)→ R, defined by

J0[D] =

∫
Ω

1

2ε
|D|2dx+

∫
∂Ω

gD · ndS ∀D ∈ H(divf ,Ω),

where
H(divf ,Ω) = {D ∈ H(div,Ω) : ∇ ·D = f a.e. Ω}.

Note that J0 differs from the functional defined in (1.13) by the boundary integral
term.

We recall that there exists a unique φ0 ∈ H1
g (Ω) that maximizes I0 over H1

g (Ω),
and the maximizer φ0 is the unique weak solution to ∇ · ε∇φ0 = −f in Ω and φ0 = g
on ∂Ω; cf. [16, 18, 25].

Theorem 4.1. We have

I0[φ] ≤ J0[D] ∀φ ∈ H1
g (Ω) ∀D ∈ H(divf ,Ω).(4.2)

Moreover, if φ0 ∈ H1
g (Ω) is the unique maximizer of I0 : H1

g (Ω) → R and D0 =
−ε∇φ0, then D0 ∈ H(divf ,Ω) and

J0[D0] = min
D∈H(divf ,Ω)

J [D] = max
φ∈H1

g(Ω)
I0[φ] = I0[φ0].(4.3)

In particular, D0 is the unique minimizer of J0 : H(divf ,Ω) → R and the minimum
value is finite.
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Proof. Let φ ∈ H1
g (Ω) and D ∈ H(divf ,Ω). Similar to the proof of (2.11) but

with the fact that ∇ ·D = f a.e. in Ω, we have

I0[φ] =

∫
Ω

(
−ε

2
|∇φ|2 + fφ

)
dx

≤
∫

Ω

(
−ε

2
|∇φ|2 + fφ+

1

2ε
|D + ε∇φ|2

)
dx

=

∫
Ω

(
1

2ε
|D|2 + fφ+D · ∇φ

)
dx

=

∫
Ω

1

2ε
|D|2dx+

∫
∂Ω

gD · ndS

= J0[D].

This proves (4.2). Clearly, D0 ∈ H(divf ,Ω), since φ0 is the weak solution to∇·ε∇φ0 =
−f . To prove (4.3), we notice that the above inequality is in fact an equality if we
replace φ by φ0 and D by D0, respectively. This equality and (4.2) then lead to (4.3).
Now (4.3) implies that D0 is a minimizer of J0 over H(divf ,Ω). It is the unique
minimizer, since J0 is convex.

We now consider a different approach as suggested in [31]. We approximate the
functional I0 by Iµ : H1

g (Ω)→ R with µ > 0, defined by

Iµ[φ] =

∫
Ω

(
−ε

2
|∇φ|2 + fφ− µ

2
φ2
)
dx ∀φ ∈ H1

g (Ω).(4.4)

For any µ > 0, let us define Bµ : R→ R by Bµ(s) = µs2/2. It is easy to verify that the
Legendre transform of Bµ is given by B∗µ(ξ) = ξ2/2µ for any ξ ∈ R. Correspondingly,
for each µ > 0, we define the Legendre transformed functional Jµ : H(div,Ω)→ R by

Jµ[D] =

∫
Ω

(
1

2ε
|D|2 +

1

2µ
|f −∇ ·D|2

)
dx+

∫
∂Ω

gD · ndS ∀D ∈ H(div,Ω).

Theorem 4.2.
(1) For each µ ≥ 0, there exists a unique φµ ∈ H1

g (Ω) that maximizes Iµ :
H1
g (Ω) → R and that is also the unique weak solution to the boundary-value

problem {
∇ · ε∇φµ − µφµ = −f in Ω,

φµ = g on ∂Ω.
(4.5)

(2) We have for any µ > 0 that

Iµ[φ] ≤ Jµ[D] ∀φ ∈ H1
g (Ω) ∀D ∈ H(div,Ω).(4.6)

Let φµ be the maximizer of Iµ : H1
g (Ω)→ R and Dµ = −ε∇φµ (µ ≥ 0). Then

we have for any µ > 0 that

Iµ[φµ] = max
φ∈H1

g(Ω)
Iµ[φ] = min

D∈H(div,Ω)
Jµ[D] = Jµ[Dµ].(4.7)

In particular, Dµ is the unique minimizer of Jµ : H(div,Ω)→ R.
(3) There exist constants C > 0 and µ0 > 0, depending only on Ω, f , g, and εmin

and εmax, such that for all µ ∈ (0, µ0]

‖Dµ −D0‖L2(Ω) ≤ εmax‖φµ − φ0‖H1(Ω) ≤ Cµ,(4.8)

|Jµ[Dµ]− I0[φ0]| = |Iµ[φµ]− I0[φ0]| ≤ Cµ.(4.9)
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Proof. (1) This part is standard; cf. [16, 18].
(2) The proof of this part is the same as that of Theorem 2.2 with Bµ, φµ, and

Dµ replacing B, φB , and DB , respectively.
(3) By (1), φµ (µ > 0) and φ0 satisfy∫

Ω

(ε∇φµ · ∇η + µφµη) dx =

∫
Ω

fη dx ∀η ∈ H1
0 (Ω),(4.10) ∫

Ω

ε∇φ0 · ∇η dx =

∫
Ω

fη dx ∀η ∈ H1
0 (Ω),(4.11)

respectively. Letting η = φµ−φ0 ∈ H1
0 (Ω) and subtracting (4.11) from (4.10), we get∫

Ω

ε|∇φµ −∇φ0|2dx = −µ
∫

Ω

φµ(φµ − φ0) dx.

It then follows from Poincaré’s inequality and the Cauchy–Schwarz inequality that

‖φµ − φ0‖2H1(Ω) ≤ Cµ‖φµ‖L2(Ω)‖φµ − φ0‖L2(Ω).

Here C denotes a generic constant that only depends on Ω, f , g, ε−, and ε+. Conse-
quently,

‖φµ − φ0‖H1(Ω) ≤ Cµ‖φµ‖L2(Ω) ≤ Cµ‖φµ − φ0‖L2(Ω) + Cµ‖φ0‖L2(Ω).

Note φ0 only depends on Ω, f , g, ε−, and ε+. Hence, we obtain the second inequality
in (4.8) for all µ ∈ (0, µ0] for some µ0 > 0 sufficiently small and depending only on
Ω, f , g, ε−, and ε+. The first inequality in (4.8) follows from Dµ = −ε∇φµ(µ ≥ 0)
and 0 < εmin ≤ ε ≤ εmax in Ω.

It now follows from the definition of Iµ (cf. (4.4)) and I0 (cf. (4.1)), and (4.8),
that for all µ ∈ (0, µ0]

|Iµ[φµ]− I0[φ0]| =
∣∣∣∣∫

Ω

[
−ε

2

(
|∇φµ|2 − |∇φ0|2

)
+ f(φµ − φ0)− µ

2
φ2
µ

]
dx

∣∣∣∣
≤ εmax

2
‖∇φµ −∇φ0‖L2(Ω) ‖∇φµ +∇φ0‖L2(Ω)

+ ‖f‖L2(Ω)‖φµ − φ0‖L2(Ω) +
µ

2
‖φµ‖2L2(Ω)

≤ Cµ
(
‖∇φµ +∇φ0‖L2(Ω) + 1 + ‖φµ‖2L2(Ω)

)
≤ Cµ

(
‖∇φµ −∇φ0‖L2(Ω) + 2‖∇φ0‖L2(Ω) + 1

+ 2‖φµ − φ0‖2L2(Ω) + 2‖φ0‖2L2(Ω)

)
≤ Cµ

(
µ+ 2µ2 + 1

)
.

This proves (4.9).

5. Application to dielectric boundary implicit solvation. We now con-
sider the dielectric boundary problem in molecular solvation. Let again Γ be a C2,
closed surface such that Γ ⊂ Ω. Denote Ω− the interior of Γ and Ω+ = Ω \ Ω−. So,
Ω = Ω− ∪ Ω+ ∪ Γ. Here, Ω− and Ω+ are the solute and solvent regions, respectively,
and Γ is the dielectric boundary. As before, we denote by n the unit normal at Γ
pointing from Ω− to Ω+. The piecewise constant, dielectric coefficient εΓ : Ω → R is
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defined again in (2.18) with ε− and ε+ two distinct positive constants. Denote again
by χ+ the characteristic function of Ω+. We define IΓ : H1

g (Ω) ∪ {−∞} by

IΓ[φ] =

∫
Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ)

]
dx ∀φ ∈ H1

g (Ω).(5.1)

Clearly, I[φ] <∞ for any φ ∈ H1
g (Ω). We consider the maximization of the functional

IΓ : H1
g (Ω) ∪ {−∞} and the boundary-value problem of the PB equation

∇ · εΓ∇φ− χ+B
′(φ) = −f in Ω,(5.2)

φ = g on ∂Ω.(5.3)

The following theorem collects some useful results proved in [10, 25, 26, 28].

Theorem 5.1.
(1) The functional IΓ : H1

g (Ω)→ R∪{−∞} has a unique maximizer φΓ ∈ H1
g (Ω).

Moreover, the maximum value is finite, and

‖φΓ‖H1(Ω) + ‖φΓ‖L∞(Ω) ≤ C

for some constant C > 0 depending on ε−, ε+, f, g, B, and Ω but not on Γ.
(2) The maximizer φΓ is the unique solution to the boundary-value problem of the

PB equation (5.2) and (5.3).
(3) The boundary-value problem of the PB equation (5.2) and (5.3) is equivalent

to the elliptic interface problem
ε−∆φ = −f in Ω−,

ε+∆φ−B′(φ) = −f in Ω+,

JφK = JεΓ∇φ · nK = 0 on Γ,

φ = g on ∂Ω.

(5.4)

In particular, φ|Ω− ∈ H2(Ω−) and φ|Ω+
∈ H2(Ω+). The spaces H2(Ω−) and

H2(Ω+) can be replaced by H3(Ω−) and H3(Ω+), respectively, if f ∈ H1(Ω).

We now denote

VΓ = {D ∈ H(div,Ω) : ∇ ·D = f a.e. Ω−}

and define JΓ : VΓ → R ∪ {+∞} by

JΓ[D] =

∫
Ω

[
1

2εΓ
|D|2 +B∗(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS.

Note that VΓ is a convex subset of H(div,Ω). Note also that JΓ[D] is the same as
J [D] defined in (2.4) (with εΓ replacing ε). Here we use the subscript Γ to indicate
that JΓ is defined on VΓ. It is clear that JΓ[D] > −∞ for any D ∈ VΓ.

Theorem 5.2. We have for any φ ∈ H1
g (Ω) and any D ∈ VΓ that IΓ[φ] ≤ JΓ[D].

If we denote φΓ ∈ H1
g (Ω) the unique maximizer of IΓ : H1

g (Ω) → R and DΓ =
−εΓ∇φΓ, then DΓ ∈ VΓ, and DΓ is the unique minimizer of JΓ : VΓ → R ∪ {+∞}.
Moreover,

JΓ[DΓ] = min
D∈VΓ

JΓ[D] = max
φ∈H1

g(Ω)
IΓ[φ] = IΓ[φΓ].(5.5)
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Proof. Let φ ∈ H1
g (Ω) and D ∈ VΓ. Since ∇ · D = f in Ω− and B∗(0) = 0, we

have B∗(f −∇ ·D) = 0 a.e. Ω−. Therefore, by integration by parts, we obtain that

IΓ[φ] =

∫
Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ)

]
dx

≤
∫

Ω

[
−εΓ

2
|∇φ|2 + fφ− χ+B(φ) +

1

2εΓ
|D + εΓ∇φ|2

]
dx

=

∫
Ω

[
1

2εΓ
|D|2 + fφ− χ+B(φ) +D · ∇φ

]
dx

=

∫
Ω

[
1

2εΓ
|D|2 + fφ− χ+B(φ)− φ∇ ·D

]
dx+

∫
∂Ω

gD · ndS

=

∫
Ω

[
1

2εΓ
|D|2 + χ+ (φ(f −∇ ·D)−B(φ))

]
dx+

∫
∂Ω

gD · ndS

≤
∫

Ω

[
1

2εΓ
|D|2 + χ+B

∗(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS

=

∫
Ω

[
1

2εΓ
|D|2 +B∗(f −∇ ·D)

]
dx+

∫
∂Ω

gD · ndS

= JΓ[D].(5.6)

Let φΓ ∈ H1
g (Ω) be the unique maximizer of IΓ : H1

g (Ω) → R ∪ {−∞} and
DΓ = −εΓ∇φΓ ∈ [L2(Ω)]3. Since φΓ is the unique weak solution to the boundary-
value problem of PB equation (5.2) and (5.3), we have by (5.2) that ∇ · DΓ = f −
χ+B

′(φΓ) ∈ L2(Ω). Hence DΓ ∈ H(div,Ω). By the first equation in (5.4), ∇·DΓ = f
a.e. Ω−. Hence, DΓ ∈ VΓ. By the second equation in (5.4), we have

B′(φΓ) = f −∇ ·DΓ in Ω+.(5.7)

Consequently,

B∗(f −∇ ·DΓ) = φΓ(f −∇ ·DΓ)−B(φΓ) in Ω+.

Therefore, we can repeat those steps in (5.6) with φΓ and DΓ replacing φ and D,
respectively, to get

IΓ[φΓ] =

∫
Ω

[
−εΓ

2
|∇φΓ|2 + fφΓ − χ+B(φΓ)

]
dx

=

∫
Ω

[
−εΓ

2
|∇φΓ|2 + fφΓ − χ+B(φΓ) +

1

2εΓ
|DΓ + εΓ∇φΓ|2

]
dx

=

∫
Ω

[
1

2εΓ
|DΓ|2 + fφΓ − χ+B(φΓ) +DΓ · ∇φΓ

]
dx

=

∫
Ω

[
1

2εΓ
|DΓ|2 + fφΓ − χ+B(φΓ)− φΓ∇ ·DΓ

]
dx+

∫
∂Ω

gDΓ · ndS

=

∫
Ω

[
1

2εΓ
|DΓ|2 + χ+ (φΓ(f −∇ ·DΓ)−B(φΓ))

]
dx+

∫
∂Ω

gDΓ · ndS

=

∫
Ω

[
1

2εΓ
|DΓ|2 + χ+B

∗(f −∇ ·DΓ)

]
dx+

∫
∂Ω

gDΓ · ndS

=

∫
Ω

[
1

2εΓ
|DΓ|2 +B∗(f −∇ ·DΓ)

]
dx+

∫
∂Ω

gDΓ · ndS

= JΓ[DΓ].
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This and (5.6), together with the fact that φΓ maximizes IΓ : H1
g (Ω) → R ∪ {−∞},

imply (5.5). The inequality (5.6) and (5.5) imply that DΓ minimizes JΓ : VΓ →
R ∪ {∞}. This minimizer is unique since the functional JΓ : VΓ → R ∪ {∞} is
convex.

Denote

WΓ = {D ∈ VΓ : there exists φ ∈ H1(Ω) such that D = −εΓ∇φ in Ω}.
Clearly, WΓ is a convex subset of VΓ. The following is a direct consequence of
Theorem 5.2.

Corollary 5.3. Let DΓ be the minimizer of the functional JΓ : VΓ → R∪{+∞}
as stated in Theorem 5.2. Then, DΓ ∈WΓ and

JΓ[DΓ] = min
D∈VΓ

J [D] = min
D∈WΓ

J [D].

The following theorem provides a set of conditions, similar to those in (5.4), that
characterize the minimizer DΓ of the Legendre transformed functional JΓ : VΓ →
R ∪ {+∞}.

Theorem 5.4. Assume f ∈ H1(Ω). Let D ∈ [L2(Ω)]3 be such that D|Ω− ∈
[H2(Ω−)]3 and D|Ω+

∈ [H2(Ω+)]3, and D = −ε−∇φ− in Ω− for some φ− ∈ H1(Ω−).
Then D = DΓ ∈ VΓ (the unique minimizer of JΓ : VΓ → R∪{+∞} as in Theorem 5.2)
if and only if D satisfies the following set of equations:

∇ ·D = f in Ω−,

D

ε+
+∇

(
B∗′(f −∇ ·D)

)
= 0 in Ω+,

JD · nK = 0 on Γ,

1

ε−
D|Ω− · τ = −∂τ

(
B∗′(f −∇ ·D)|Ω+

)
∀ unit vector τ tangential to Γ,

B∗′(f −∇ ·D) = g on ∂Ω.

(5.8)

Several remarks are in order. First, if D = DΓ, the unique minimizer of JΓ :
VΓ → R∪{+∞}, then DΓ = −εΓ∇φΓ with φΓ the unique maximizer of IΓ : H1

g (Ω)→
R∪{−∞}. Consequently, as shown in the proof of the theorem, the equations in (5.8)
are equivalent to those in (5.4). Second, the second interface condition (i.e., the fourth
equation in (5.8)) is not the jump across Γ of a very same quantity. This is because the
B part is only for the solvent region Ω+ as it models the ionic contribution. Therefore,
the Legendre transform is only applied to part of the entire region Ω. Finally, we
require D to be the gradient of a function in Ω−. Otherwise, the divergence-free
vector field D + ε−∇φΓ in Ω− may be nonzero in Ω−. (It will be a curl of a vector
field if Ω− is simply connected.) Note the minimizer DΓ fulfills this requirement.
Moreover, in terms of numerical implementation, solving the equation ∇ · D = f in
Ω− can be converted to solving a more well-defined equation −ε−∆φ− = f in Ω−.

Proof of Theorem 5.4. Clearly, the minimizer DΓ ∈ VΓ of the functional JΓ :
VΓ → R∪{+∞} satisfies DΓ ∈ [L2(Ω)]3. Since DΓ = −εΓ∇φΓ with φΓ the maximizer
of IΓ : H1

g (Ω) → R ∪ {−∞}, we have by Theorem 5.1 that DΓ|Ω± ∈ [H2(Ω±)]3 and
that clearly DΓ = −ε−∇φΓ in Ω− with φΓ ∈ H1(Ω). We show that DΓ satisfies (5.8).
The first equation in (5.8) with DΓ replacing D follows from the definition of VΓ and
the fact that DΓ ∈ VΓ. Note from (5.7) and (1.12) that

B∗′(f −∇ ·DΓ) = φΓ in Ω+.(5.9)
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This and the relation DΓ = −εΓ∇φΓ imply the second equation in (5.8) with DΓ

replacing D. The third equation in (5.8) follows from the second interface condition
in the third equation of (5.4) with DΓ and φΓ replacing D and φ, respectively. With
D = DΓ = −εΓ∇φΓ and (5.9), the fourth equation in (5.8) becomes ∂τφΓ|Ω− =
∂τφΓ|Ω+ on Γ for any unit vector tangential to Γ. This is true, since φΓ|Ω− = φΓ|Ω+

on Γ by the continuity of φΓ; cf. the first interface condition in (5.4). Finally, by (5.9)
and the fact that ∂Ω is a subset of ∂Ω+, the last equation of (5.8) with D = DΓ is
the same as the last equation in (5.4).

Assume now D ∈ [L2(Ω)]3 satisfies D|Ω− ∈ [H2(Ω−)]3 and D|Ω+
∈ [H2(Ω+)]3,

and D = −ε−∇φ− in Ω− for some φ− ∈ H1(Ω−). Assume also that D satisfies (5.8).
Then by the third equation in (5.8), we have D ∈ H(div,Ω); cf. the last part of the
proof of Theorem 2.4. Moreover, D ∈ VΓ by the first equation in (5.8). It now suffices
to show that D is a critical point of the strictly convex functional JΓ : VΓ → R∪{+∞},
i.e.,

δJΓ[D][G] =
d

dt

∣∣∣∣
t=0

JΓ[D + tG] = 0 ∀G ∈ H(div,Ω) such that ∇ ·G = 0 in Ω−.

Fix G ∈ H(div,Ω) with ∇ · G = 0 in Ω−. Suppose Ω− = ∪iΩ(i)
− , where Ω

(i)
− are

countably many, disjoint, connected components of Ω−. Denote Γ(i) = ∂Ω
(i)
− . Hence,

we have the disjoint union Γ = ∪iΓ(i). For each i, Γ(i) is a connected smooth surface.
Therefore, by the fourth equation in (5.8) and the relation D · τ = −ε−∂τφ−, we have
B∗′(f −∇ ·D|Ω+

)−φ−|Ω− = ci on Γ(i) for some constant ci ∈ R. It now follows from
the second and fifth equations in (5.8), the divergence theorem, and the fact that the
unit normal n points from Ω− to Ω+ that

δJΓ[D][G]=

∫
Ω−

D ·G
ε−

dx+

∫
Ω+

[
D ·G
ε+

+B∗′(f −∇ ·D)(−∇ ·G)

]
dx+

∫
∂Ω

gG · ndS

= −
∫

Ω−

∇φ− ·Gdx+

∫
Ω+

[
D

ε+
+∇

(
B∗′(f −∇ ·D)

)]
·Gdx

+

∫
Γ

B∗′(f −∇ ·D|Ω+
)(G · n) dS +

∫
∂Ω

[
g −B∗′(f −∇ ·D)

]
G · ndS

= −
∑
i

∫
Ω

(i)
−

∇(φ− + ci) ·Gdx+

∫
Γ

B∗′(f −∇ ·D|Ω+)(G · n) dS

=
∑
i

∫
Γ(i)

[
B∗′(f −∇ ·D|Ω+

)− (φ−|Ω− + ci)
]

(G · n) dS

= 0.

This completes the proof.

6. Conclusions. A commonly used electrostatic free-energy functional of elec-
trostatic potential is concave downward and its critical point is the maximizer of such
a functional. Maggs [31] proposed a Legendre transformed functional of electrostatic
displacements. This new functional is convex and is therefore minimized at the crit-
ical point. Here, we first present a rigorous proof of the equivalence of these two
functionals. We then generalize this approach to several cases, including the case
with a higher-order gradient term and that without ions, to establish the related vari-
ational principles. We finally apply this approach to the dielectric boundary model
of molecular solvation.
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Potentially, a Legendre transformed functional can be coupled with other energy
functionals to minimize consistently the total energy. For example, in a continuum
model of molecular solvation, the electrostatic free energy with a dielectric boundary is
often coupled with the surface energy of such a boundary. In such a situation, using the
Legendre transformed electrostatic free-energy functional of dielectric displacements
can be advantageous, as each part of the total energy is to be minimized. A practical
issue in using a Legendre transformed electrostatic free-energy functional is to find the
Legendre transform B∗ of B. Only for a special case (1:1 salt), the explicit form of B∗

seems to be available [31]. In general, the function B∗ can be numerically determined
and tabulated. A disadvantage of using a Legendre transformed functional is that
the corresponding Euler–Lagrange equation is more complicated, particularly for the
case of the functional with a higher-order gradient term. Further work is therefore
needed to demonstrate how the new forms of electrostatic free-energy functionals are
both theoretically and practically useful.

Our main contributions here are twofold. One is to provide some mathematical
insight into the Legendre transformed electrostatic free-energy functional in various
situations. The other is to apply this framework to the solvation of charged molecules.
This includes the construction of a new Legendre transformed electrostatic free-energy
functional for the molecular electrostatics with a dielectric boundary and the deriva-
tion of a set of interface conditions for the equilibrium electrostatic displacement. Our
follow-up work will be to develop numerical methods for molecular solvation with our
newly constructed Legendre transformed electrostatic free-energy functional.
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